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1 Fundamentals of Chemical Kinetics 

1.1 Concentrations 

Chemical kinetics is the quantitative study of chemical systems that are 
changing with time. (Thermodynamics, another of the major branches of 
physical chemistry, applies to systems at equilibrium-those that do not 
change with time.) 

In this course, we will restrict our attention to systems that are homoge­
neous and well mixed (a major restriction) , and that are at constant volume 
(a minor restriction that simplifies the notation, but can be easily lifted.) 
With these two restrictions it is useful to describe the chemical system in 
terms of concentrations of the species present: 

[A] = nA (1)
V 

where [A] indicates the concentration of species A, V is the volume, and nA 

indicates the amount of A present in that volume. In discussions of reac­
tions in solution, the usual units for [A] are mol dm-3 or moUL, called mo­
lar and written M. (The name "molar" and the symbol M are now regarded 
as obsolete by NIST and by IUPAC, and the explicit notations mol dm-3 

or moUL are preferred; however, most chemists appear to be ignoring their 
lead.) 

For gas phase reactions, the customary units are molecules cm-3, often 
. 1 -3written SImp y cm ' . 

The chemical state of a homogeneous system can be described by spec­
ifying the concentrations of all the species present and the pressure and 
temperature. 

1.2 Reaction rates 

For a general chemical reaction 

aA + bB + .. . ---4 yY + zZ + ... , (2) 

we define specific reaction rates with respect to each reactant or product: 

1df
fr = ±1--, (3)

"( dt 
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1. Fundamentals of Chemical Kinetics 2 

where I is the stochiometric coefficient for species r in the balanced equa­
tion. The + sign is used if r is a product. the - sign if it is a reactant. Thus 

1 d[A]
rA = ---. (4)

a dt 

The rate always has units of concentration/time. For solution reactions 
the usual units are M s-1. while for gas phase reactions the most common 
unit is cm - 3 S-1 . 

These specific rates are not necessarily the same for different species. If 
there are no reaction intermediates of significant concentrations. then 

(5) 

the rate of the reaction. For very many systems. intermediates are impor­
tant. all the specific rates are different. and it is then necessary to specify 
which specific rate is being discussed. 

1.3 Rate laws 

For most reactions. the rate(s) depend on the concentrations of one or more 
reactants or products. Then we write 

rr = f([A]. [B]. [V]. [I]. [C]. T. p.... ) (6) 

where the list shows explicitly that r might depend on the concentrations 
of species other than those in the balanced equation. as well as on temper­
ature. pressure. and so on. Often the dependence on variables other than 
concentrations is suppressed (a set of conditions is implied or specified). so 
that we write 

rr = f([A]. [B]. [V]. [I]. [C] .... ). (7) 

This kind of expression. giving the rate of the reaction as a function of the 
concentrations of various chemical species. is called a rate law. Notice that 
the rate law is a differential equation: it gives the derivative (with respect 
to time) of one of the concentrations in terms of all the concentrations. The 
solution to such a differential equation is a function that gives the concen­
tration of species r as a function of time. 

1.3.1 Examples 

The gas phase reaction that is the foundation of the very powerful infrared 
HBr laser is 

H2 + Br2 --t 2HBr. (8) 
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3 1. Fundamentals of Chemical Kinetics 

It has the rate law 
I 

~ d[HBr] _ k1[Hz][Brz]2 
(9)2 dt - 1 + [~Brl) , 

k2 Br2 

where kl and kz are numbers (called rate coefflcients, or sometimes rate con­
stants) that are independent of the species concentrations but do depend on 
T. 

The solution phase two-electron transfer reaction 

(10) 

has the rate law 

! d[Fe2+] = k[Fe2+] [TI3+] (11)2 dt . 

The gas phase reaction between hydrogen and chlorine, 

H2 + Cl2 ~ 2HCI, (12) 

is the basis ofa popular demonstration (the "HCI cannon"). In the presence 
of oxygen it has the rate law 

1 d[HCI]
--- ­
2 dt 

(13) 

1.4 Simple rate laws and reaction order 

In some cases, the rate law takes on the simple form 

(14) 


proportional to powers of reactant concentrations. Then the sum of the 
powers is called the reaction order (or overall order), and the individual 
powers are called the orders with respect to the particular reactants. The 
orders m, n, 0, etc.. must be determined experimentally; neither the form of 
the rate law nor the orders (should they be defined at all) can be predicted 
from the balanced equation. 

In the second example above. the overall reaction is second order: first 
order with respect to each of Fe2+ and TI3+. 

The other two example reactions do not have rate laws of this simple 
form. Note. however. that they can appear to have simple forms under 
some circumstances. In the first example. if there is very little HBr present 
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2. Integration of simple rate laws 4 

so that k2[Br2] » [HBr]. the second term in the denominator of the rate law 
will be negligible compared to 1 and the reaction will appear to have over­
all order 3/2 (first order with respect to hydrogen and one-half order with 
respect to bromine). In the third example. if there is no oxygen present. the 
second term in the denominator disappears and the reaction appears over­
all second order (first order with respect to both hydrogen and chlorine.) 

2 Integration of simple rate laws 

Generally the rate law for a reaction is determined by measurements of the 
concentrations of one or more species as a function of time. I will approach 
the problem backwards. first showing what concentration-vs-time behav­
ior might be expected for several simple rate laws. then talking about how 
to design experiments to measure rates and how to extract rate laws from 
kinetic data. 

2.1 First order reactions 

While true first order reactions are comparatively rare. first-order rate be­
havior is extremely important because many more complicated reactions 
can be "tricked" into behaving like first-order ones and first-order behav­
ior is easier to handle experimentally than any other type. 

If the general reaction 

aA + bB + ... ----> yY + zZ + ... (15) 

is first order with respect to A. and its rate depends on no other concen­
trations (it is zero order with respect to all other species). then the rate law 
is 

_~ d[A] = k[A]. (16) 
a dt 

Notice that k must have units of s -1: that will always be true of first-order 
rate coefficients. k is a positive number that does not depend on any con­
centrations. though it does depend (usually strongly) on temperature. 

2.1.1 Integration of the rate law 

The rate law is a differential equation; in tbis case it is a separable equation. 
and can be solved simply by isolating the terms corresponding to the dif­
ferent variables [A] and t on different sides of the equation and integrating 
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2. Integration of simple rate laws 5 

both sides: 

~ d[AJ = -kdt (17)a [A] 

~J-l d[AJ = -kJdt (18)a [A] 

1

-In[A] = -kt+ C (19)a 

C is an as-yet-unknown constant of integration. Exponentiating both sides 
we obtain 

(20) 

Most authors absorb the constant a into the first order rate coefficient k in 
order to avoid writing k' . It is important to pay attention to exactly what 
differential equation is being solved; sometimes those missing constants 
cause errors when people aren't careful. 

We must find the value of the constant C by applying the initial con­
ditions. At time t = 0, the concentration of A is Ao. We therefore have 
C = Ao, so that 

[AJ(t) = Aoe-k't (21) 

and the concentration of A falls exponentially with time from its initial 
value. 

Since a is known (it's part of the chemical equation), the rate coefficient 
can be determined by measuring [AJ as a function of time.Figure 1 shows 
two common plots used to demonstrate or analyze this behavior. 

2.1.2 Half life and time constant 

The half-life for a reaction is time time required for some reactant to reach 
half its initial concentration (or more precisely, for its concentration to reach 
a value halfway between its initial and final concentrations; for this case, 
they're the same.) For a first-order reaction we can find the half-life tllZ by 
substituting into Eq. (20): 

[AJ(tllz) = Ao = Aoe-k't1l2 (22)
2 

In ~ = -k't1l2 (23) 

In2 
tllZ = iT (24) 
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Figure 1: Two plots showing the concentration-vs-time behavior for a sim­
ple first order reaction. 
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2. Integration of simple rate laws 7 

Notice that the half life for a first order reaction is independent of the initial 
concentration of A; this is a very convenient property and is not true for 
other reaction orders. 

The time constant r of this reaction. (also called the natural lifetime. the 
e-folding time. or the 1/e time) is the time required for the concentration 
of A to reach 1/e(~ 0.37) of its initial concentration. We can find it by a 
similar calculation: 

[A](r) = Ao = Aoe-k'T (25) 
e 

1 IIn- = -kr (26) 
e 

1 
r= --; (27)

k 

The 1/e time is again independent of the initial concentration of A. Both 
the half-life t1l2 and the 1/e time r have units of time: seconds. years. mi­
croseconds. or whatever. Both provide a quick-and-dirty way to estimate 
the first-order rate coefficient qUickly from a plot of the concentration vs. 
time obtained in an experiment; just look to see how long it takes for the 
concentration to drop to half its initial value (to get t1l2) or to just above 
1/3 of its initial value (to get r). Then invert that time. and multiply by 
In 2 ~ 0.7 if you measured the half-life. 

2.1.3 Analysis of first-order data 

First-order reactions have an important property that makes them easier to 
study than others. If you can measure any property that is linearly related 
to the concentration (more precisely. affine in the concentration: Q = a:[AJ + 
(3). then you can determine the rate coefficient without having to know 
either a: or (3; that is. the analytical method you use to measure [AJ need not 
be calibrated! 

If A is a reactant. then you fit the Qvs. time data to an equation of the 
form 

Q= Ce-kt+D. (28) 

and if A is a product you fit to 

Q = C(l - e-kt ) + D. (29) 
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2. Integration of simple rate laws 8 

and in either case the value of k is independent of the slope a and offset f3 
in the expression Q = a[A] + f3. 

Many textbooks will suggest that you use the equation 

- In ( Q - Qoo ) = kt (30)
Qo - Qoo 

and therefore make a logarithmic plot to find k. However. this method 
has the disadvantages that (1) it relies too heavily on the precision of the 
single measurement Qoo at very long time. and (2) that it requires careful 
weighting of the data in the linear least-squares fit if an accurate value of k 
is required. In the homework solution set for this week I demonstrate both 
kinds of fits for one problem. 

Examples of observables Q that are useful in analyzing first-order reac­
tions include 

1. mass of reaction mixture (for reactions evolving gases) 

2. capillary rise 

3. optical absorption 

4. optical rotation in a polarimeter (classic) 

5. fluorescence 

6. mass spectrometer signal on either product or reactant mass 

The crucial point is that you do not have to know how your"detector" is 
calibrated; you only have to know that its reading is proportional to the 
concentration (possibly with some offset). 

2.2 Pseudo-fIrst-order reactions 

When a reaction is known to follow a rate law of higher order than 1. con­
centrations can often be adjusted to make the kinetics appear first order 
with an effective rate coefficient. Consider a reaction 

2A+B ---+ C (31) 

with the rate law 

_~ d~~] = k[A][B]. (32) 
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2. Integration of simple rate laws 9 

This rate law is second order overall, and its rate coefficient k has units M-1 

s-l. But if we run the reaction with a very large excess ofB, say Bo = 100Ao, 
then [B] will change very little during the reaction-it will be nearly equal 
to Bo the whole time- and we can write 

_! d[A] ~ k'[A] (33)
2 dt ' 

where J! = kBo. k' is a pseudo-first-order rate coefficient with units s-l. 
Now, if we do this experiment at several different values of Bo (all very 
large compared to Ao), extract a J! for each with an exponential fit as de­
scribed above, and then plot J! vs. Bo, we should get a straight line with 
slope k (that is, the true secondcorder rate coefficient). This is one of the 
best ways to measure second~order coefficients. 

It's much better to make that k' vs. Eo plot and find its slope to get k 
than to evaluate k from the measured k' at a single Bo. Using only a single 
measurement will get you the wrong 'answer if there is some competing 
process that can remove A from the system'(such as a slow decomposition 
reaction). 

2.3 Reactions second order in a single reactant 

Here we have 

d[A] = -k[A]2 (34)
dt 

d[A] = -kdt (35)
[A]2 

Jd[A] = -kJ dt (36)
[A] 2 

1 
-- = -kt+C (37)

[A] 

Applying the initial condition [A] (t = 0) = Ao we find C = -1/Ao, so 

1 1 (38)[A]- Ao = kt 

The textbook analysis is to plot lI[A] against t and extract the slope 
to get k. Notice that the plot of [A] vs. time is not exponential, as it is 
in the first-order case, but hyperbolic; the concentrations approach their 
asymptotic values much more slowly than in the first order reaction. 

notes-IGeM July 19, 2002 



2. Integration of simple rate laws 10 

Look at the half-life now. By an analysis similar to that we used before, 
we find 

1 
(39)tl/2 = kAo 

Now, the half-life depends on the initial concentration. In fact, it is in­
versely proportional to the initial concentration. If you double the initial 
reactant concentration, the half-life will be cut in half. Similarly, if you 
compare the first and second half-lives for a single reaction mixture, the 
second one is twice as long as the first (whereas in the first order case, they 
are the same.) This gives a quick and dirty way to estimate reaction orders 
from data (I show a couple of examples in the homework.) 

2.4 Mixed second order reactions 

One of the most common rate laws in practice is "mixed second order": 
first order in each of two reactants. For the simple reaction 

aA + bB -> products, (40) 

if A and B are consumed simultaneously we have 

_~ d[A] = _~ d[B] = k[A][B] . (41) 
a dt b dt 

If A and B start with stoichiometric concentrations, aAo = bBo, then this 
looks just like the previous case, since alA] = b[B] at all times. 

Otherwise, we have two differential equations: one each in [A] and [B] . 
Since A and B are consumed simultaneously we can say 

b
[B] = Bo - - (Ao - [AJ), (42)

a 
so that 

1 d[A] (b )- - - = k[A] Bo - - (Ao - [A]) (43)
a dt a 

d[A]
-(it = k[A] (aBo - bAo + brA]) (44) 

= k[A] (l'io+ brA]) (45) 

This equation is separable; solving it, applying the initial condition, and 
substituting back in for [B] gives 

( [B]) (Bo)In [A] = In Ao + Mo t. (46) 
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3. Determination of rate laws 11 

So, a plot of In( [Bj / [Aj) against t gives a straight line with slope Mo. 
The closer Ao and Bo are to stoichiometric concentrations, the more 

poorly ~o is known; this method is numerically unsuitable near stoichio­
metric initial concentrations. It's usually best to run kinetic experiments 
under conditions where one reactant is clearly the limiting reactant. 

3 Determination of rate laws 

I will first discuss two popular methods that assume a rate law of the simple 
form 

(47) 


Both usually require that a single reactant be isolated; that is, its concen­
tration must be the only one in the rate law that is changing during the 
reaction. Usually reactants are isolated by flooding the system with the 
other reactants. 

3.1 Method of half-lives 

We have already seen a few examples of this technique. If you compare the 
first half-life for a reaction with the second half-life, the ratio gives you the 
order according to Table 1. (I derived this table with a method exactly like 
the one required for Problem 25.21 in Atkins.) 

Table 1 Ratios of second to first half-lives for reactions of various orders. 
The first half-life is the time require for the limiting reactant to reach half 
its initial concentration; the second half-life if the time required for it to go 
from half its initial concentration to one-fourth of its initial concentration. 

Order 0 112 1 3/2 2 3 
tllZ (2) 1t1lZ (1) 112 11 v'2 1 v'2 2 4 

3.2 Method of Guess-and-Try 

Here you do what you have been doing in the homework: take a guess 
at the reaction order (perhaps with the half-life method as a guide), and 
then make some sort of plot that should be a straight line if your guess was 
right. We have already worked out what plots you would make for three 
common rate laws, and several more are given in the table from Laidler's 
book on the next page. 
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3. Determination of rate laws 	 12 

There are a couple of problems with this method: 

1. The rate law might not have a simple form at all. 

2. 	 You might get tired before guessing the right form, and decide that 
one of the ones you have already done seems to fit the data "okay", 
not realizing that another rate law (that you didn't try) fits much bet­
ter. 

If you use this method on a reaction you are studying, it is a good idea 
to check the result with one of the more detailed methods I describe in the 
next section. Also, it is very important to collect your data for long enough. 
Following the reaction out through at least two half-lives is necessary. It is 
very hard to distinguish an order 312 reaction from a first or second order 
one by looking at a plot that only takes the reaction halfway to completion. 

3.3 Differential methods 

The term" differential method" indicates that a derivative (a reaction rate) 
is being measured directly. To measure a rate, you measure concentrations 
at several times whose separation is small compared to the reaction half­
life, then evaluate the derivative (the slope) d[A]/ dt over that small region. 
If you make this measurement right at the beginning of the reaction, when 
the concentrations are the ones you put in the beaker, you are using the ini­
tial rates method; if you make rate measurements at several times while the 
reaction is going on, you are using the single-run differential method (these 
are Laidler's names.) The best kind of kinetic study uses these methods 
together. 

3.3.1 Initial rates 

To do an initial rates study you start the reaction several times with differ­
ent starting concentrations. The concentrations are chosen so that several 
(at least two, but preferably three or more) runs are available in which the 
concentration of one reactant varies while the others stay the same. If you 
have n reactants and you want to use m concentrations for each then you 
will have to start the reaction n (m - 1) + 1 times. 

Then, for each set of data that has one reactant changing and the others 
constant, you make a plot of the log of the initial rate (on the yaxis) against 
the log of the initial concentration (on the x axis). The slope of this line 
gives you the order of the reaction with respect to that reactant. If the plot 
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13 3. Determination of rate laws 

is not linear, then the reaction has no order with respect to that reactant 
(the rate law is not the simple product-of-powers form). This case is quite 
difficult to discover with other methods. 

Note that in initial rates studies it is not necessary to flood the system 
with the other reactants; you do the measurements before any of the con­
centrations have changed anyway. Figure 2 (taken from Laidler) shows 
how the data look for a typical initial rate study on the order with respect 
to one reactant. 

Figure 2: Figure from Laidler, Chemical Kinetics 3rd edition, showing treat­
ment of initial rate data. 

The initial rates method is the best general method for the determi­
nation of reaction orders. Its disadvantages are that (1) it can be time­
consuming and expensive, since a rather large amount of data must be col­
lected, and (2) it requires that the mixing and analytical methods be fast on 
the timescale of the reaction. 
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3. Determination of rate laws 14 

3.3.2 The single-run differential method 

In this method, rates are taken from a single plot of concentration vs. time, 
where other concentrations than the one being studied are held constant 
(typically by flooding). At each of several times during the reaction, you 
measure the slope of the concentration-versus-time curve, and then make a 
plot of log of rate against log of concentration to obtain the order. The next 
page shows such an analysis on a reaction that turned out to be second 
order. 

3.3.3 Combined differential methods 

It is sometimes (when the rate law involves only one reactant, or when you 
can flood the others) possible to combine data from the initial rates and 
single run methods onto a single plot. If you are doing an initial rates study, 
you have to start the reaction a bunch of times anyway, and if it doesn't take 
too long you might as well follow the concentrations for a while. Then you 
can make a plot of In v vs. In c that includes all the data. 

If the Single-run data lie along the line given by the initial rates, then 
the rate law is simple. If the single-run slopes are larger than the initial rate 
slope (as in the example plot below), then the reaction is slowing down 
more than expected as it progresses; it is product inhibited. If the single-run 
slopes are smaller than the initial rate slope, the reaction is not slowing 
down as much as expected; products are speeding it up somehow, and we 
say that it is autocatalytic. 
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4. Elementary Reactions and Mechanisms 15 

4 Elementary Reactions and Mechanisms 

If a chemical equation describes an individual molecular event, as for instance 

(48) 

then we can write down the rate law from the stoichiometry: 

_ d[O] = _ d[CH4] = d[OH] = d[CH3] = k[O] [CH ] (49) 
dt dt dt dt 4 ' 

where k is an elementary rate constant. This example is a bimolecular re­
action; the other possibilities are unimolecular and termolecular, both of 
which are rarer. Most chemical reactions are not elementary as written. 
One of the main goals of most kinetic studies is to determine the sequence 
of elementary reactions, or mechanism, which makes up an overall reaction. 

The "laboratory" reaction 

21Cl + H2 ------+ 12 + 2HCl (50) 

might have the observed rate law 

~ d[~~l] = k[ICl] [H2]' (51) 

This rate law suggests that the kinetics are dominated by a bimolecular re­
action between ICI and H2. One possibility for the mechanism is 

k 
ICI + H2 --J..... HI + HCI (slow) (52) 

k 
HI+ICI2 HCl+I2 (fast) (53) 

We will shortly see how to analyze the behavior of this mechanism quan­
titatively. Note that adding together Eq. (52) and Eq. (53) gives the overall 
reaction. 

The mechanism lists the elementary reactions making up a chemical 
process. It can be used to predict the detailed concentration vs. time behav­
ior and therefore the observed rate law. A mechanism (proposed) cannot 
be proven correct, though it can be proven wrong by disagreement with 
observed behavior. 
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16 4. Elementary Reactions and Mechanisms 
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Figure 3: Behavior of a reversible first order reaction for the case Bo = 0 
and kl = 2kz· 

4.1 Simple example: reversible unimolecular transformation 

The mechanism 

A ~B (54) 

B ~A, (55) 

which can also be written 

A ,kl\ B, (56) 
kz 

gives the set of "elementary rate laws" 

(57) 

(58) 

This is a system of two coupled ODEs. Once the initial conditions are 
specified, its solution describes the complete time dependence. Figure 3 
shows a graphical representation of the concentration vs. time profiles of 
both components when Bo = O. In this case, the system of equations can 
be easily solved analytically, and I will now show how to do that. In more 
complicated cases I will leave out the detailed solutions. 

We can solve the system by using mass balance to uncouple the two 
equations: [B] = Bo + (AD - [AJ) from stOichiometry, so that 
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17 4. Elementary Reactions and Mechanisms 

d[Aj----cit = -kdAj + kz(Bo+ Ao - [AJ). (59) 

Eq. (59) is now a separable differential equation in [AJ only. Its solution, 
with [AJ( t = 0) = Ao, is 

[Aj(t) = kJ ~ k {(kJAO - kzBo)e-(kl +k2 ) t + kz(Ao+ Bo)} (60)z 

The rate law in this case looks like 

d[Aj-----cit = (kJ + kz)[Aj- kz(Bo+ Ao) (61) 

= k'[Aj + C, (62) 

and the reaction order is not defined . 
At equilibrium, the forward and reverse rates are the same, so 

kdAjeq = kz[Bjeq (63) 

[Bjeq 

[Ajeq 
kJ 

kz 
(64) 

= Keq (65) 

Many exact solutions of this type are given by C. Szabo, in Comprehen­
sive Chemical Kinetics, ed. by Bamford and Tipper. (v.2?) 
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5. Exact and approximate analytic solutions to sets of rate equations 18 

5 	 Exact and approximate analytic solutions to sets of 
rate equations 

Any kinetic system composed entirely of first-order (or pseudo-first-order!) 
steps has an exact analytic solution. It may be found by the linear algebraic 
methods described in Sec. 2.5 in Steinfeld, Francisco, and Hase. Moder­
ately complicated systems can also be handled with Laplace transforms, 
described in Sec. 2.4 of the same text. These techniques work only for linear 
(1st-order) systems. Let's consider qualitatively a few simple cases, where 
the higher-powered solution techniques are unnecessary. 

5.1 Consecutive first-order reactions 

A~B~C 	 (66) 

An example of this sort of system is the electronic quenching of excited 
bromine atoms by CO2, 

Br~ 	 + CO2 ---> CO~ (OOI) + Br 3 (67)
2 2 

CO~ + CO2 ---> 2C02, (68) 

under conditions of excess CO2 so that it is pseudo first order. One way to 
monitor the reaction progress is to measure IR luminescence of Br' or CO~. 

The differential equation describing [A] is the usual one corresponding 
to first-order decay, so that A decays exponentially with T = 11kj • If you 
substitute the exponential decay into the equation for d[B ] / dt, you get a 
.. first order linear" (not separable) differential equation. It can be solved by 
standard techniques. [B] grows, then decays: 

[B] = kjAo (e-k1t _ e-kzt ) (69)
k2 - k j 

The maximum concentration of B depends on the relative sizes of k j and 
k2. Let's look at the two extreme cases, illustrated in the upper and lower 
panels of Figure 4. 

5.1.1 Consecutive 1st-order, k j » k2 

In this case, then at short times (t 2: 0), the second exponential term in 
Eq. (69) is near 1, the equation looks like B ::::: Ao (1 - e- kl t), and B grows 
in with time constant 11 kj as though no conversion to C was occuring. At 
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Figure 4: Temporal behavior of consecutive, irreversible first-order reac­
tions. The upper panel shows the case kl = 5kz:the lower panel shows the 
case kz = SkI' 

long times, the first of the two exponential terms goes toward zero, and 
we have [B] :::: Aoe- k2t , so that B is decaying toward C with time constant 
11kz. The system essentially converts all the A to B, and then, on a slower 
timescale, converts the B to C. The maximum concentration of B will be 
nearly the initial concentration of A. 

We can get [C] by mass balance: [C] = Ao - [A]- [B]. 

5.1.2 Consecutive 1st-order, kI « kz 

In this case, a B molecule decays to C almost as soon as it is formed: only 
very small concentrations of B ever appear. Once a small "steady-state" 
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Figure 5: Temporal behavior of competing. irreversible first-order reac­
tions. In this figure k1 = 2k2. 

concentration of B has built up. it looks like C is appearing with the same 
rate that A is disappearing. so C appears with roughly an exponential rise 
that has T 11kl' We will see that this simple system. with its short­rv 

lived intermediate B. is an example of systems for which the steady state 
approximation is useful. 

5.2 Competitive (parallel) first order reactions 

In this case. the mechanism is 

(70) 

(71) 

The rate equations are 

d[AJ
(it = -(k1 + k2)[AJ (72) 

d[BJ
dt 

= k [AJ 
1 

(73) 

d[C]
dt 

= k [AJ
2 

(74) 

The first of the three is an ordinary first-order decay. giving [AJ = 
A o e--(k1+kz)t. Substituting that result into the second and third equations 
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5. Exact and approximate analytic solutions to sets of rate equations 21 

gives separable equations for both Band C, which have nearly the same 
solutions: 

(75) 

(76) 

Note that the temporal behavior of both Band C are the same; their rise­
times are determined by the sum of the two elementary rate coefficients. 
Their concentrations are determined by the individual rate constants, such 
that [B] I [C] = k] I kz always. Such systems are convenient to study ex­

perimentally; measure TA to get k] + kz, then simply measure ~ at any 
convenient time (typically t ~ 00) to get the ratio k]lkz. Those two mea­
surements are enough to determine the individual ks. This approach is the 
basis of the very popular "relative rates method" of experimental kinetics. 

5.2.1 Kinetic vs. thermodynamic control 

If the reactions are reversible, 

k 
A ~B (77) 

k- ] 

k 
A .,---~C , (78) 

Lz 

then the issue of thermodynamic or kinetic control of products appears. 
Assuming no direct interconversion of Band C, 

(79) 

If k] Lz « L] kz so that Ksc « 1. then at equilibrium there will be 
much more ethan B and we say that C is the" thermodynamically favored" 
product. 
On the other hand, if k] » L] and kz » L z. both elementary reactions 
will "act irreversible" - their forward rates will be much greater than their 
reverse ones - until most of the A is gone. During that time the ratio 
[B] I [C] ~ k] I kz. If k] » kz. mostly B will appear. B is then called the 
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22 5. Exact and approximate analytic solutions to sets of rate equations 

"kinetically favored" product. These conditions on the rate coefficients are 
not mutually exclusive, and the effect is not at all rare. If 

kl = 100 S- 1 LI = 10-7 

10- 12k2 = 10-2 L2 = 

then Table 2 shows the resulting concentrations. This is a not-too-extreme 
case of kinetic control. 

Table 2 Kinetic control 
time [A](%) [B](%) [C](%) 
0 100 0 0 
10 s 0 99 1 
3 months 0 98 2 
1900 years 0 99 

C;CM July 19. 2002 notf's -3 



23 5. Exact and approximate analytic solutions to sets of rate equations 

5.2.2 Relative Rate Experiments 

Consider elementary reaction ofB with two compounds Al and Az, to give 
products PI and P2. 

(80) 

(81) 

If B is added to a mixture of Al and A2, whose concentrations are » 
[Blo, then 

d[PIl
dt 

= k [A ] [B]
I I 0 

(82) 

d[Pz] = k [A ] [B]
dt 2 z 0 

(83) 

d[Ptl 
d[P21 

kl [Atlo 
k2[A 2]0 

(84) 

So, after a long time 

(85) 

If either kl or kz is known from other measurements, this technique 
allows determination of the other without a concentration-vs.-time exper­
iment; just let B react to completion with a mixture of Al and Az, then 
analyze the products when the reaction is over. This relative rate technique 
has been used extensively to measure reaction rates of radicals. 

Example: Generate phenyl radicals (C6HS·) by pyrolysis of a precursor, 
in the presence of both a hydrocarbon RH and CCI4. After the reaction, 

measure the ratio [C6HsCl] / [C6H6] . That ratio times [ ~di; lo gives the ratio 
of rate constants kcci / kRH . Careful work requires several starting ratios;

4 

then from Eq. (85) plotting the final product ratio vs. the initial reactant 
ratio yields kl / kz as the slope, and a zero intercept. 

Equivalently, the loss rates for Al and A2 can be observed, if one is 
confident that no other processes remove them from the system. Then 

d [~tl = kdAtl [B] (86) 

d[~2 ] = k2 [A2][B]. (87) 
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6. Approximations 24 

so 

d[Ad kl [Ad 
(88)

d[A2l k2 [A2l 

k d[Ad _ k d[A2l (89)2 [Ad - 1 [A2l 

k21n[Ad = klln[A2l +C (90) 

When [Ad = [Ado. [A2l = [A2lo. so C = k21n [Ado - kJ ln[A2lo 

(91)k2 In C~JJ/J = kl In C~llJ 
kl In (~) 

(92) 
k2 In ( [~22J~) 

so measurement of [Ad and [A21 at any time will give k1/k2 . 

The advantage of relative rate techniques is that slow but quantitative 
analytical techniques (gas chromatography. wet-chemical analysis. etc) can 
be used to study even fast reactions. 

6 Approximations 

What to do if a mechanism is too complicated to usefully compare its pre­
dictions with data? 

In particular. mechanisms give concentration vs. time for all species. 
Usually we are only interested in reactants or products or both. So we 
seek a method to eliminate the concentrations of intermediates in our rate 
expressions. 

Example: 

A 
kl 
~ B (93) 
LJ 

B+C ~ 0 (94) 

Net reaction A + C ----> D. 
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25 6. Approximations 

d[A] 
-kdA] + LdB] (95)

dt 
d[B] 

kdA]- (L} + k2[C])[B] (96)
dt 

d[C] 
-k2[B][C] (97)

dt 
d[D] 

k2[B][C] (98)
dt 

If B is a very reactive species (perhaps an organic free radical), we might 
assume that its concentration remains small throughout the reaction. Then 
the absolute slope of its concentration will be small compared to other time 
dependences in the system, and we write 

d[B] ~ 0 (99)dt . 

This is called the steady-state or Bodenstein approximation. 
We then use that assumption to eliminate [B] from the rate expressions 

for the product D. 

(100) 

(101) 

(102) 

d[D] S~A k}k2 [A][C] apparent 2nd order (103)
dt LJ 

apparent 1st order (104) 
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6. Approximations 26 

6.1 Validity of SSA 

It is sufficient that the sum of all effective rate coefficients" out of"' the in­
termediate be much greater than the sum "into" the intermediate. In our 
example, this means 

(lOS) 

(It's generally safe to take" »" to mean" greater by a factor of 50 or more "; 
smaller ratios are often acceptable.) 

In addition, there must be a "build-up time" during which [B] climbs to 
its (small) steady-state value, and d1~ 1 :::::: 0 must be incorrect. This period is 
over when 

(106) 
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27 6. Approximations 

6.2 Other Simplifying Approximations 

Once again, consider the mechanism 

(107) 

(108) 

and let us look for an expression for d~~l. We have the set of rate equations 

d[A]
Cit = -kdA] + LdB] (l09) 

d[B]
Cit = kdA]- (L) + k2 )[B] (110) 

d[C] = k [B] (111)
dt 2 

I want to consider two main cases, illustrated in Figure 6 and summa­
rized in Table 3. 

Table 3 Relations among simplifying approximations. 

Case Requirements Long-time rate coefficient 
SSA (L) + k2) » k] k]k2/(L] + k2) 
REA (k] + L]) >> k2 k)k2/(k) + Ld 

SS-EQ L) » k) and L) » k2 k]k2/L] 

6.2.1 Rapid equilibrium case: (k] + L j ) » k2 

The rate equations for A and B now look like the simple system A ~ B, 
whose solution was worked out in Section 4.1. After a time;::::j 1/ (k] + L]), 
the A ~ B reaction will reach approximate equilibrium so that [B] ;::::j

f- [A] . A and B will act like a single species that is slowly decaying toward 
1 

C, and 
d[C] R~A klk2[A] (112)

dt L] 

This is the "rapid equilibrium approximation." 
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6. Approximations 

Figure 6: The steady-state and equilibrium approximations for the A ~ 
B ----+ C mechanism, for two different sets of rate coefficients. In the left 
panel L] = kz = 10k]: in the right panel k] = L] = 10kz. 

6.2.2 Steady state case: (LJ + kz) » kJ 

This is just the requirement for the steady-state approximation. Applying 
it to this case gives 

d[B] SSA
Cit = -kdA] - (L J + kz)[B] ;:::: 0 (113) 

so 

(114) 

(115) 

6.2.3 Equilibrium-steady-state case 

If, in the steady-state case, LJ » kz, or, in the rapid equilibrium case, 
L \ » kJ' then these two approximations reduce to a common result. which 
Pyun U. Chem. Ed. 48, 194 (1971)) calls the "equilibrium-steady-state so­
lution". This simplest approximation requires that LJ be the fastest rate 
coefficient in the system. 

After the time required for the establishment of either the steady state 
or the rapid equilibrium condition, C begins appearing (in this first-order 
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6. Approximations 29 

example) with a simple exponential behavior. The effective rate coefficient 
for this appearance is given in Table 3. 

6.3 Rate determining steps 

In some cases. the overall reaction rate is dominated by one of the elemen­
tary steps. and that step is called the "rate-determining" or "rate-controlling" 
step. 

In the steady-state approximation. if k2 » L 1• then the long-time rate 
coefficient reduces simply to k1. In that case the formation of B from A is 
limiting the overall rate. and we say that the first step is rate-determining. 

In the rapid equilibrium approximation. if kl » L 1• then the A-B 
equilibrium lies heavily in the direction of B. and the long-time rate coeffi­
cient becomes simply k2. In this case the second step is the rate controlling 
one. 

If the combined SSA-EQ approximation holds. then C appears with an 
effective rate coefficient that is the product of the rate coefficient for the sec­
ond step and the equilibrium constant for the first step. In this case. the sec­
ond step is again the rate controlling one. but the apparent rate coefficient 
(if one tries to model the mechanism with a simple A ---+ C elementary 
step) is modified by the equilibrium constant for the initial equilibrium. 

Notice that a single rate-controlling step does not always exist. For ex­
ample. in a sequence of consecutive first-order transformations. if all the 
steps have the same rate coefficient then no one of them dominates the 
rate. (In other words. if you changed anyone of them slightly. the overall 
rate of production of product would change.) 

These various approximations - SSA. rapid equilibrium. rate-controlling 
step. etc. - are often more valuable for the chemical insight they provide 
than for mathematical power. In many cases they can be used to focus at­
tention on the particular ports of a mechanism which are most important 
in determining the rate. 

Whenever one or more assumptions about the values of rate coefficients 
are made. it is worthwhile to check the range of validity of the assumptions 
with numerical work. 
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6. Approximations 30 

6.4 Examples 

6.4.1 Ligand substitution 

The nucleophilic substitution reaction 

Ni(CO)4 + PPh3 --> Ni(COhPPh3 + CO (116) 

has the proposed mechanism a. P. Day et al., lACS (90), 6927 (1968)) 

(117)Ni(CO)4 

(118)Ni(COh + PPh3 

Applying the steady-state approximation to the unsaturated intermedi­
ate Ni(COh gives 

d 
dt[Ni(COhl = kdNi(CO)41- (LdCOl + k2 [PPh3]) [Ni(COhl (119) 

[N'(CO) 1S~A k j [Ni(CO)41 (120) 
1 3 LdCOl + k2[PPh31 

d 
dt[Ni(COhPPh31 = k2[Ni(COh][PPh31 (121) 

S~A k [PPh 1 k j [Ni(CO)41 (122) 
2 3 LdCOl + k2[PPh31 

Under conditions of high ligand (PPH3) concentration, the rate law will 
reduce to 

Ni(COh + CO 

(123) 

that is, first order in the carbonyl concentration only. This is a common 
kinetic behavior seen for metal carbonyl nucleophilic substitutions. 

6.4.2 Dinitrogen pentoxide decomposition 

The reaction 
(124) 

follows an observed first-order rate law. The reaction between N20 S and 
NO also looks first order but is much faster. N03, a blue gas, also appears as 

GeM Julv 19. 2002 nO(1"5- 5 



31 6. Approximations 

Figure 7: Data on dinitrogen pentoxide decomposition (from Johnston. Gas 
Phase Reaction Rate Theory). 
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32 6. Approximations 

an intermediate. A page from Johnston showing some data is reproduced 
in Figure 7. 

First-order kinetics suggests a unimolecular reaction as an important 
step. Try this: 

(125) 

(126) 

(127) 

We shall try to find an expression for d[~~2 1 . 

Apply SSA to N03: 

(130) 

(131) 

Substitute into d [~~2 1 expression: 

(132) 

(133) 

This is still pretty ugly. Since NO is consumed quickly on the timescale 
of this reaction, try applying SSA to NO as well. 

(134) 

(135) 
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so 

d[N02l S~A k [N 0 1{k2[N02l+ 3k2[N02l} (136)
dt 1 2 5 (L1 + 2k2)[N02l 


d[N02l S~A 4kJk2 [N 0 1 
 (137)
dt Ll + 2k2 2 5 

So with these two approximations we have found a first -order rate law, 
as observed. 

The most common approach in steady-state treatments is to eliminate 
the concentrations of presumed intermediates, in order to find a rate law 
in terms of reactant or product concentrations only. The formation of .. ef­
fective" or .. observed" rate coefficients in terms of elementary ones usually 
becomes clear, but it is not always obvious that the SSA should hold at all. 

6.4.3 Oxidation of aqueous azide 

This example shows both the use of the steady-state treatment for an un­
stable intermediate and the effect of rapid equilibria that precede a rate­
determining step. 

A simplified mechanism for the oxidation of azide ion by aqueous Br2 
is 

fast 
---4Br2 + N3 BrN3 + Br- (138) 

Kl 
----=---->.BrN3 +Br- .,---- Br2N3 (139) 

kJ 
---4BrN3+N3 Br- + N6 (140) 

k3 
---4N6 3N2 (141) 

The reaction was followed under conditions of excess N3 and Br - by 
observing the appearance of N2 gas (T. S. Vivekanadam et aI., Int.]. Chem. 
Kin. 13, 199 (1981).) The product appeared with an apparent first-order 
behavior that dependended linearly on [N3l. The intermediate N6 is an 
obvious candidate for the steady state approximation: 

[N6l S~A ~: [BrN3][N3l (142) 

d[N2l = 3k [N 1 (143)dt 3 6 

S~A 3kJ [BrN3l [N3l (144) 

GeM July 19.2002 notes· 5 



34 6. Approximations 

The first reaction is "fast", so it is reasonable to regard the initially 
added bromine as converted completely to BrN3 immediately. The BrN3 
can either be complexed by Br- in step 139, or react to form product in step 
140. The equilibrium gives us 

(145) 

When rapid equilibria are present, it is often useful to define a quantity 
whose value does not change so long as no reactions other than the eqUilib­
rium reactions occur. In this case we can define a quantity that is the total 
concentration of oxidized bromine, and examine its kinetics. 

M = [BrN3] + [Br2N3] (146) 

R~A [BrN3] + KdBrN3][Br-] (147) 

R~A [BrN3](1 + KdBr-j) (148) 

[BrN ] R]2,A M (149)
3 ~ 1 + KdBr-] 

Since M is only destroyed in step Eq. (140), 

(150) 

(151) 

Note that d/l! is just proportional to the rate of appearance of product, 
and that it should be expected to follow pseudo-first-order kinetics under 
conditions of constant [N3] and [Br]. The effective first-order rate coeffi­
cient is 

k - [N-] kl (152)
eff - 3 1 + Kj[Br-] 

The appearance of several terms in the denominator of a rate expression is 
a common effect of equilibria that precede a rate-determining step. 

Notice that bromide acts to inhibit the reaction by tying up the oxi­
dized bromine (the oxidizing agent) in the unreactive complex Br2N3' The 
standard experimental analysis of this sort of competitive equilibrium is to 
measure keff at several values of [Br-], and make a plot of [N3] I keff against 
[Br-]. The intercept of such a plot is 1Ikj , and its slope is K1lk j • 
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In fact, the complex can add another bromide ion to form Br3N~- , and 
the BrzN3" can react with azide to produce N6 with a smaller rate coeffi­
cient than k!. This additional component to the equilibrium and additional 
pathway to products do not change the basic pseudo-first-order nature of 
the reaction, but they make the expression for k eff more complicated. 
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7. Experimental Techniques 36 

7 Experimental Techniques 

7.1 Elementary considerations 

Several questions must be answered before an experimental approach can 
be selected. 

• Over what time does the reaction occur? 

• Are the reactants stable or unstable? 

• What range of temperature is interesting? 

All these questions are relevant to the choice of experimental technique 
independent of the particular detection method employed. 

7.2 Stable reactants, slow to medium time scales 

7.2.1 Batch mixing 

This is kinetics on classical stir-in-a-pot reactions. It works for T 2: 10 s. You 
can analyze the concentrations by removing samples at intervals and titrat­
ing, using ce, whatever. A method for stopping reaction in your sample 
(freezing, neutralization, etc) is handy. Or, you can monitor the reaction in 
situ - optical absorption, polarimetry, ion-selective electrodes, conductivity, 
etc. all work. 

7.2.2 Flow Experiments 

For faster reactions, say T 2: 0.1 s, you can let the reactants come together 
continuously in some sort of mixing chamber, then allow them to react 
while flowing along a tube. At each point along the tube, the concentra­
tions are steady, so signals can be averaged to get good signal to noise; ex­
periments at different distances along the flow tube yield concentrations at 
different times since the reaction began. One disadvantage is that it usually 
requires lots of reactants. 

Discharge flow experiments for gas phase reactions with unstable reac­
tants use a steady electric discharge to produce one or both reactants before 
they enter the main reaction tube. This is a very popular method for study­
ing reactions of radical and ionic species. Spectroscopic detection along the 
length of the tube, or mass spectrometry at the end of the flow tube, using a 
moveable injector to vary the flow distance, are the most popular detection 
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Figure 8: Simple flow apparatus. 

techniques. Gas phase flow experiments can have time resolution down to 
rv 0.1 ms, though at that speed they consume prodigous amounts of gases. 
Good references are C.]. Howard, J. Phys. Chern. 83,3 (1979), and F. Kauf­
man, J.Phys. Chern. 88,4909 (1984). 

Oser et aI, 24th Symp. (International) on Combustion, The Combustion 
Institute, 1992) studied OH + CH3 reactions by generating OH and CH3 in 
separate discharges: 

flwave
H2 ) 2H (153) 

H + N02 ------ OH + NO fast, (154) 
/-Iwave

F2 ) 2F (155) 

F + CH4 ------ CH3 + HF fast, (156) 

OH + CH3 ------ H20 + CH2 (plus other channels) (157) 

They measured the rate coefficient of the last reaction by detecting OH at 
different distances along the flow tube with fluorescence. 

7.2.3 Stopped-flow technique 

For faster reactions, 10-3 s or slower, the stopped-flow technique works for 
solution samples. In this method, solutions of reactants are mixed rapidly 
in a special chamber and flowed through a detection cell (optical detection 
is most popular). So long as the reactants are flowing steadily, no change 
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in the composition of the mixture in the detection chamber appears. When 
the flow is stopped suddenly, the composition begins changing and this 
change is monitored in time. See Figure 9. 

Stopped flow is popular among enzyme kineticists, especially for study­
ing enzyme reactions in the initial stages before the steady state concentra­
tions of enzyme-substrate complex have formed. The term for work during 
this buildup period in the enzyme community is "transient state kinetics" , 
in contrast to "steady state kinetics" when the Michaelis-Menten analysis 
works. 

Figure 9: Schematic of stopped-flow apparatus 

The hydrodynamics of most solvents limits the stopped-flow technique 
to timescales of a millisecond or longer; faster reactions will already be 
partially underway by the time the mixing is complete, so it is hard to 
get meaningful data on well-mixed solutions. For faster reactions of sta­
ble species, it is necessary to produce one reactant in situ, or to use near­
equilibrium techniques. 

7.3 Near-equilibrium methods for fast reactions 

Two kinds of near-equilibrium techniques are important: relaxation and 
nmr. Both are good on the microsecond to millisecond timescale. 
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Figure 10: Schematic of T-jump apparatus 

7.3.1 Relaxation (T-jump and p-jump, mostly) 

Let reaction come to equilibrium. with concentrations Ae. Be. Ze for A + 
B ~ Z. Then "disturb" the equilibrium by changing T. P. etc. suddenly 
so that the equilibrium concentrations should be different. and watch the 
relaxation to a new equilibrium value. 

kJ 
Relaxation example: A + B ~ Z 


LJ 


(158) 

(159) 

Write 

[A] = Ae - b. [B] = Be - b. [Z] = Ze + b (160) 

d[A] db
----cit = - dt = -kJ(Ae - b)(Be - b) + LJ (Ze + b) (161) 

db 2 
- dt = -kJ(AeBe - (Ae+Be)b+b )+LJZe+LJb (162) 

db 
- dt =b(kJ(Ae+Be)+LJ-kJb),-kJAeBe+LJZ~ (163) 

v 

= 0 

If b « Ae + Be (a "small" disturbance). then 

(164) 
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and all components relax toward their equilibrium concentrations with first­
order kinetics, T = k (A +k )+k . Together with long-time measurements of 

1 e e -1 

the equilibrium concentrations, both kJ and Ll can be obtained. 
The most common ways to disturb the equilibrium are to change T or 

P rapidly. To change T, the solution can be heated with an electric current. 
Figure 10 shows a basic circuit. The energy stored in a capacitor of capaci­
tance C at voltage V is ~CV2. When the switch is closed, the energy stored 
on the capacitor heats the solution resistively, so!1 T = ~ Cy1CV2, where Cv 
is the heat capacity of the solution. 

To change P for a pressure-jump experiment, the usual technique is to 
burst a diaphragm holding back a high-pressure gas. For slow reactions, 
concentration-jump also works: add an aliquot of product to shift equation 
back toward reactants, etc. 

Manfred Eigen won the 1967 Nobel Prize in Chemistry for development 
of the relaxation method of studying fast reactions. (It was shared with the 
developers of the flash photolysis method to be described shortly.) 

7.3.2 NMR Lineshape Analysis (Esp enson sec. 11.5) 

Chemical shifts in nmr spectra are determined by "chemical environments" 
of the nuclei at resonance. Consider (CH3)zNCHO. It has a hindered rota­
tion about the C-N bond. If that rotation is "frozen", the two methyl groups 
are in different environments, and the spectrum (of either lH or 13C) will 
show a pair of lines, one for each methyl group. However, if the rotation 
is very fast compared to the time over which the absorption experiments, 
each methyl group will see an "average" environment that is part -H and 
part -0, and so they will have exactly the same chemical shift and appear 
as a single nmr line. In between these two extremes, the lines show a con­
tinuous change of behavior. An analysis of the lineshape can therefore be 
used to determine the rate of exchange. Figure 11 shows a nice set of data 
recently obtained by Professors Matchett and Zhang. 

The "experimental timescale" is given roughly by 1/!1v, where!1v is the 
difference in asborption frequencies in the absence of exchange. Typically 
the timescales range from 100 fls to 1 s. 

Generally these experiments are done at varying temperatures, to change 
the rates. A rough guide is that the two lines will just become distinct at a 
temperature where k '" Jz (!1v) (for Keq = 0.5.) Most new nmr spectrome­
ters contain canned software to do these lineshape analyses. 
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Figure 11: NMR lineshapes obtained by Profs. Matchett and Zhang. The 
two resonance lines correspond to two protons at the end of a substituted 
ethylene; they are mixed by rotation about the C-C double bond. 

Several different kinds of reactions can be studied with nmr. They in­
clude solvent exchange, as in 

CH3CH20Ha + H~O ~ CH3CH20Hb + HaOHb (165) 

Here the methyl and ethyl protons are slightly split by the hydroxyl pro­
ton, because the OH proton can have its moment aligned along or against 
the magnetic field. However, when an exchange reaction occurs, the new 
proton can go on in either direction . If many exchanges occur, the CH3CH2 

protons see only an average OH-proton indirect coupling. 
Electron transfer and metal-ligand equilibria can also be studied effec­

tively this way. 
In these experiments, as in the relaxation (T-jump, P-jump, etc.) meth­

ods for studying equilibrium rates, the "relaxation constant" k' = k] + L] 
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is measured. The individual rates can be obtained if the equilibrium con­
stant kJ / LJ is also known. 

References on lineshape analysis include E.L. King, ]. Chern. Ed. 56, 
580 (1979), and H. Gunther, NMR Spectroscopy - An Introduction, Wiley, NY, 
1972. 

7.4 Flash Photolysis 

Flash photolysis is the main technique for medium-to-fast reactions with 
unstable reactants, and is nearly the only technique used for the very fastest 
reactions. It uses photochemistry of a "precursor" P to produce reactant A: 

hvP ---> A (+ other stuff) (166) 

A + B ---> products (167) 

The photolysis step needs to be fast compared to subsequent reaction steps. 
Flashlamps give light pulses lasting 1-20 /-IS; lasers can produce pulses of 
many lengths, but the most common ones nowadays range from 20 ns, ade­
quate for bimolecular gas phase reactions at moderate pressure or bimolec­
ular solution reactions (that do not have solvent as one reactant), down to 
about 50 fs, which is needed for the fastest unimolecular reactions in solu­
tion. The detection method also needs to be fast with respect to the overall 
kinetics; optical methods (transient absorption. laser-induced fluorescence, 
pulsed polarimetry) are the most popular approaches. In most experiments 
the flash and subsequent analysis are done repeatedly, either on the same 
sample if product buildup is not a problem, or on a series of fresh samples 
produced by a slow flow of reactants through the detection region. 

Norrish and Porter shared the Nobel Prize in 1967 with Eigen, largely 
for their development of flash photolysis. The prize to Ahmed Zewail last 
year was for applications of flash photolysis at very short time scales. 

A gas phase example is in Bersohn et al,]. Chern. Phys. 101, 5818 (1994): 

193nm, IOns 
)S02 SO + Oep) (168) 

OeP) + C2H2 ---> HCCHO' (169) 

HCCHO' ---> H+HCCO (170) 

HCCHO' ---> CH2+CO (171) 

Bersohn et al. monitored the H and CO products with laser induced fluo­
rescence. 
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7.5 Shock Tube Experiments 

In a shock tube experiment, a low-pressure gas of reactants is suddenly 
heated by the passage of a strong shock wave, produced by rupture of a 
diaphragm that was holding back a high pressure" driver" gas. The tem­
perature can change by more than 1000 K in fractions of a millisecond, and 
optical techniques are used to follow the subsequent chemistry. This tech­
nique is good for gas phase reactions at high temperature (700-2500 K), and 
is nearly the only technique for gas phase reactions above;:::: 1400 K. Many 
of the rate coefficients needed in complicated models of hydrocarbon com­
bustion have been measured this way. 

Figure 12: Shock tube apparatus. 

There are only about a dozen shock-tube laboratories in the world. The 
main disadvantages of the technique are 

• The high-temperature chemistry is often very complicated, and it can 
be difficult to sort out different elementary reactions . 

• It is hard to do repetitive signal averaging since each repetition of the 
experiment takes at least an hour or so. Experimenters are therefore 
limited to detecting species that are easy to see. 

There was a good review of shock tube techniques and results by].V. Michael, 
in the 1992 Ann. Rev. Phys. Chern. 
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8 Construction ofcandidate mechanisms from rate laws 

8.1 Rate controlling steps in sequential mechanisms 

The heuristic procedures I will describe below for constructing a mecha­
nism from a carefully determined rate law depend on particular elemen­
tary steps being rate-controlling under some conditions. I therefore need to 
say a little more about how to think about rate controlling steps. Intermedi­
ates are stable chemical species at free energy minima; transition states are 
unstable and will immediately react without further perturbation. 

.:­
G 

Figure 13: Schematic free energy diagram for sequential 1st-order system 
with 4 intermediates, A --+ Xl --+ X2 --+ X3 --+ X4 --+ P 

In a sequential mechanism, to decide on an RCS you must divide the re­
action path into sections separated by successively lower (more stable) in­
termediates. Condense the mechanism to include only those intermediates. 
Figure 13 shows the free-energy curve for a reaction that is a complicated 
sequence of first-order steps. 

GeM July 19.2002 notes-7 



45 8. Construction of candidate mechanisms from rate laws 

In Figure 13 we have 
A ----> XZ ----> P. (172) 

The other steps will be fast compared to those. Of the remaining steps, the 
one with the largest free energy barrier between the beginning and end of 
the section will be the ReS. 

In Figure 13, the largest barrier is from Xz to +4, so the second step in 
the condensed scheme will be the RCS. Intermediate Xz will build up; other 
intermediates will remain at low concentrations. 

For bimolecular reactions, this simple scheme must be modified to in­
clude concentrations, producing" effective first -order " rate coefficients. See 
].R. Murdoch,]' Chern. Educ. 58,32 (1981) . 

8.2 Mechanism construction rules 

A carefully determined rate law can be interpreted to obtain the atomic 
composition and charge of the important transition states (highest point in 
each section of the free-energy diagram), and often some information about 
reactions prior to the ReS. It never (without studies specifically on the el­
ementary reactions making up the mechanism) tells about fast reactions 
which follow the ReS. 

Espenson gives a set of guidelines for interpretation of rate laws which 
I'll describe. These depend on accuracy of the steady-state and equilibrium 
approximations in appropriate parts of the mechanism. They are not fool­
proof but are sensible and useful. 

1. 	 If the rate law is written in terms of the predominant species in the 
reaction medium, the composition and charge of the transition state 
for the RCS is the" algebraic value" of the concentration terms in the 
observed rate law. An undetermined number of solvent molecules 
may also be present in the transition state. 

In our example from Section 6.4.2, 

(173) 

with rate law 
d[NzOsl = k[N °1 	 (174)dt z 5, 

the transition state for the slow step simply has the composition NzOs. 

In the aqueous redox reaction 

(175) 
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46 8. Construction of candidate mechanisms from rate laws 

(176) 

We "subtract out" the denominator, to obtain a transition state com­

position of TIHg, and a transition state charge of 3+. 


F or orders of ~, use only half the atoms: 


where MG is the protein myoglobin, has the rate law 

(178) 


and the TS is thought to have the composition Mn MG SOz with no 
charge. 

2. 	 A sum of positive terms in the rate indicates independent parallel 
pathways to the same product. The composition and charge of the 
transition state along each pathway is found as above. 

31- + HzOz + 2H+ -----t 13 + 2HzO (179) 

d~;] = ka[I - ] [HzOz] + kb[I- ] [HzOz] [H+] (180) 

This aCid-catalyzed reaction would be studied by monitoring the for­
mation ofI3 in various pH buffered solutions. ka could be determined 
by extrapolation to zero [H+]. There are two pathways, plain and cat­
alyzed, with compositions in the TS of (HzOzI) - and H30 zI. 

We can see how this example comes about in a simple case: 

k 
A+B ~C 	 (181) 

Ll 

C+A ~D 	 (182) 

C ~D 	 (183) 

Applying SSA to C, 

SSA d[C]o ~ dt = kdA][B]- (k- l + k3 + kz [A]) [C] (184) 
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so 

(185) 

Now 

d~~] = kz[A][C] + k3 [C] 	 (186) 

kJkz[Af[B] kJ k3[A][B]
-:----'--~--'--':c-':-:-:- + -:----'---'--'------'-'-=:-'-:-:-:- (187)
LJ + k3 + kz[A] LJ + k3 + kz[A] 

In the small [Allimit (kz[Al « Ll + k3), giving 

rate = (k klk\ ) [A]z[B] + (k kl k3k ) [A][B] (188) 
- 1+ 3 -1+ 3 

and we correctly interpret that there are two important transition 
states with compositions AzB and AB. 

In the large [Allimit, kz[A] » Ll + k3' so 

k k 
rate = kl [A] [B] + ~z 3[B] 	 (189) 

We can manipulate this expression to show that the first term domi­
nates: 

kz · rate = k1kz[A][B] + klk3[B] (190) 

= kdB](kz[A] + k3) (191) 

~ kdB]kz[A] (from large [Al assumption) (192) 

rate = kdA][B] 	 (193) 

In this limit the first step has become rate controlling and the k3 step 
is unimportant. The relevant T.S. is the AB collision complex. 

3. 	 A sum of n terms in the denominator implies a succession of at least 
n steps; all but the last of them must be reversible. 

2Fez+ + Tl3+ ---+ 2Fe3+ + Tl+ (194) 

d[Tl3+] k[Fez+]z [Tl3+] 
(195)

dt [Fez+] + k'[Fe3+] 
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At low product concentration ([FeZ+] » k' [Fe3+]), we have rate 
k[Fez+][Tl3+] . At high product concentration, 

k [FeZ+]z [Tl3+] 
rate = I 3+ (196)

k [Fe] 

With 2 terms in the denominator, we expect two successive transition 
states. Their compositions (but not order of occurrence) are obtained 
from the limiting cases where one or the other term dominates. In 
this example they have compositions (FeTl)5+ and (FeTl)4+. 

4. 	 Species appearing as single terms in the denominator of a rate expres­
sion are produced in steps prior to the RCS. 

In the last example we postulate that under high concentrations of 
Fe3+, it is a product in the first of the two steps. The two reactants 
have total charge +5, so try this mechanism: 

k 
~ Fe3+ + Tlz+ (197) 
k_l 

~ Fe3+ +Tl + 	 (198) 

The second step has TS composition (FeTl)4+, as required. Apply 
SSA to Tlz+: 

d[T~;+ ] = kdFez+][Tl3+]- [Tlz+](LdFe3+] + kz[Fez+]) (199) 

so 

TlZ+ S2..,A kJ [Fez+] [Tl3+] _ k[Fez+] [Tl3+] 
(200)

[ ] ~ Ll [Fe3+] + kz[Fe3+] - [Fe3+] + kl [Fez+] 

rate = k [Tlz+][Fez+] = kl kz[Fez+f [Tl3+] (201)
Z LdFe3+] + kz[Fez+] 

k[Fez+] z[Tl3+]
rate = -~'-------:'---'----~ (202)

k' [Fe3+] + [Fez+] 

where k = kl and k' = LJlkz. 

So this mechanism agrees with the observed rate law at both low and 
high concentrations of Fe3+. At high concentrations, the first step be­
comes a rapid prior equilibrium. Large concentrations of Fe3+ drive 
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the concentration of T12+ down and reduce the rate of formation of 
product. 

8.3 	 Application of "mechanism rules" to a simple inorganic ex­
ample 

Vanadium ions can be oxidized by Hg2+: 

(203) 

The observed rate law is 

k[v 3+f[Hg2+] 
(204)

k' [V4+] + [V3+]· 

Rule 3 tells us to expect at least 2 steps. Rule 1 gives the composition of the 
two transition states as (VHg) 4+ and (VHg) 5+. In the succession of steps 
required by the rules, all but the last must be reversible. 

Since the two reactants can themselves produce one of the two required 
transition states ((VHg)5+), it's natural to bring them together as one step: 

(205) 

The Hg+ product of that reaction can react with another V3+ to give the 
second required transition state. This reaction need not be reversible (but 
could be). A single, rapid, association reaction between two mercury atoms 
can complete the mechanism. 

Hg+ + V3+ ~ V4+ + Hgo 	 (206) 

Hgo + Hg2+ ~ Hg~+ 	 (207) 

Now, let us check to make sure this mechanism gives the correct rate 
law with reasonable assumptions. The intermediates are Hg+ and Hgo. 
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Applying the SSA to Hg+, we find 

d[~;+] = kdy3+][Hg2+]- Ldy4+][Hg+]- k2[y3+][Hg+] (208) 

[H 	 +] S~A k] [y3+] [Hg2+] 
(209) 

g Ldy4+] + k2[y3+] 

_ d[~:+ ] S~A kdy3+][Hg2+]- Ldy4+][Hg+] + k2[y3+][Hg+] (210) 

= kdy 3+][Hg2+] + [Hg+](k2[y3+]- Ldy4+]) (211) 

= kdy 3+][Hg2+] 

(212)+ ( 	 k] [y3+] [Hg2+] ) (k [y3+] _ L [y4+]) 
Ll [y4+] + k2[y3+ ] 2 ] 

( k2 [y3+] ­Ldy4+]))
- k 	[y3+] [H 2+] ( 1 + (213)- ] g -'-k d-y"7"":"4- -[y--';3-'­-_- +] +-k2 +]-'-­

- k 	[y3+][H 2+] ( 2k2 [y3+] ) (214) 
- 1 g Ldy4+] + k2[y3+] 

2k] [y3+] 2[Hg2+] 
(215)

kk;1 [y4+] + [y3+] 

which is the observed rate law. Note that the rapid , post-RCS reaction of 
Hgo does not enter the rate law. That is the general case: fast reactions 
that follow the rate controlling step do not appear in the rate law. An­
other example of that principle was the decomposition rate of N6 in the 
bromine-azide reaction; its rate constant does not appear in any of the rate 
expressions once the steady state approximation has been applied to N6. 
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9 Kinetic-molecular theory of gases 

The" kinetic theory of gases" makes the following assumptions about gases: 

1. 	 Gases are composed of particles in constant, random motion 

2. 	 The particles are small compared to the distances between and the 
size of the container 

3. 	 The particles do not interact except that they have elastic (translational­
energy-conserving) collisions with each other and the container walls 

4. 	 The particles move according to classical mechanics. 

(Atkins, section 1.3, leaves out the last assumption.) 

9.1 Pressure of an ideal gas 

Consider a gas of N identical particles in a rectangular container. We want 
to calculate from kinetic theory the pressure the gas exerts on the walls. 

Consider a single particle, particle i, with components of its velocity v xi' 
Vyi' Vzi· Upon colliding elastically with a wall parallel to the yz plane, the 
x component of its velocity changes sign. The change in momentum of the 
particle is therefore 2mvxi' where m is the particle mass. 

Now consider how many molecules will hit the wall in time M . All 
molecules within vx6t of the wall, and that are moving toward the wall 
rather than away from it, will hit the wall in time 6 t . Half the molecules are 
moving toward the wall, so the number that will hit the wall is !N Avx6 t/ V, 
where A is the area of the wall. The total momentum change at the wall is 
therefore 

!NAvxM(2mvx)/V = NAm~M/V. Not all the molecules have the 
same x component of velocity, so I should use the average squared speed 
in that expression: 6p = NAm(~) M/V. The force is the rate of change of 
momentum, F = dp/ dt: the force on the wall is therefore the momentum 
change 6p divided by M, or NAm (~)/ V. The pressure is the force per 
unit area, so it is that force divided by the area of the wall: P = Nm( ~)/ V. 

There is nothing special about the x-direction: we should expect the 
average speeds of the molecules in all directions to be the same. If I call the 
average squared speed (in three dimensions) c2, I have c2 = ~ + ~ + V;, 
and since all three directions are equivalent this reduces to c2 = 3~' so we 
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52 9. Kinetic-molecular theory of gases 

have 
p=~Nmc2 (216)

3 V 

This gives the pressure of the gas in terms of microscopic properties of 
the molecules (their masses and average squared speed). 

9.2 	 Average speed, translational energy, and temperature 

I have used c2 as the average of the square of the speed for the gas molecules. 

Then the average translational energy must be (I'tr ) = ~ mc2. For the whole 

sample of N particles we therefore have Etr = ~ N mc2. It is important to 
notice that even though the molecules have a wide distribution of speeds 
(more on that later), the translational energy of the whole sample is very 
well defined if N is large. Substituting into Eq . (216) gives 

pV = 	~ N (l'tr ) = ~Elf· (217) 

Let me assert that temperature, T, is a monotonic function of Etr . Then 
if T is constant. Etr is constant. so that P is proportional to 1/ V. This is a 
first-principles derivation of Boyle's Law. 

What is the relation between T and Etr? Let us compare with the ideal 
gas law: 

2 
PV = 	nRT = NkT = 3Etr (218) 

3 3 
Etr = 	 ZNkT = ZnRT (219) 

that is, T is linear in Etr , and the proportionality constant is ~ R times the 
number of moles of molecules. 

2The average squared speed is c , so the "root-mean-square speed" , c, 
comes from 

1 2 3 
(Etr ) = 	 Zmc = zkT (220) 

2 3kT 
c =­	 (221) 

m 

(c2) ~ (222)c = 
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Notice in the last equation, I have written the formula both in terms of k and 
the molecular mass, and then in terms of the gas constant R and the molar 
mass (which must be in kg, not in g!J Using the last form in problems can 
often save annoying conversions from amu to kg and lets you lise the gas 
constant R = 8.314 JK- 1 mol - 1 rather than Boltzmann 's constant. 

9.3 The distribution of speeds 

The molecules do not all move with the same speed. To describe the distri­
bution of speeds, we need to use a probability density function, just as in 
quantum mechanics (where the probability density function, l{J2, described 
the distribution of position). Remarkably, we can find the distribution of 
speeds assuming only that all directions in space are equivalent. and that 
the different velocity components for a molecule are independent : what a 
molecule 's speed is in the x direction says nothing about its speed in the y 
or z directions. 

9.3.1 One-dimensional velocity distribution 

First, let's seek the one-dimensional distribution of speeds, {(vxJ , such that 
the fraction of molecules with x-components of speed between a and b is 

j.b 

P( a :S Vx :S b) = f(vJ dv, (223) 
. a 

Because all directions in space are equivalent. the function of {( vy ) must 
be the same one that describes the probability distributions in \'~ and vL as 
well. You can think of this one-dimensional function of Vx as giving the 
probability that a molecule will have its x component of velocity between 
Vx and Vx + dvx ' 

The probability density must be normalized, so that 

(224) 

Now, what is the probability that a particular molecule will have its x 
component of velocity between Vy and Vy + dvx ' its y component of veloc­
ity between vy and Vy + dvy , and its z component of velocity between Vz 
and Vz + dv/ Because the speeds in the various directions are assumed 
to be independent, that must be the product of the three one-dimensional 
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probabilities: 

(225) 

This is a three-dimensional function , of velocity. But, by the assumption of 
equivalence of directions, it cannot depend on the ac tual direction of the 
velocity; it can only depend on speed . Therefore, 

[(vxl [ (Vy) f (vzl = CP (V) (226) 

a function of speed only (V = v;. + V; + V;). Now, what kind of function 
satisfies this requirement. that a product of functions is equal to a single 
function of the sum of the arguments? There's only one function that does 
that: the exponential, because eaebl = ea+b+c. So the candidate function is 

(227) 

a Gaussian! I have inserted the - ~ for later convenience (this causes no 
loss of generality). A and b are yet to be determined, but if we choose 
this distribution function, we can be assured that the requirements of our 
assumptions will be satisfied. 

To find A. we normalize: the particle must have some x component of 
velocity, between - 00 and 00 . So 

(228) 

We can do this using the standard integral 

r'" e- a.l dx = {ii, (229)
.J-00 Va 

where a > 0, so that 

(230) 

(231) 

Notice that b must be positive for this normalization to w ork; otherwise the 
integral is infinite and our function is not an acceptable probability density. 
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Now we need to find b. We have [ 2 = 3 ( ~ ) = 3~T, so that ( ~ ) = ~' . 
We can also ca lculate that average from the probability density functioll , 
using the usual formula for the average of a funcrion: 

(232) 

(233) 

We need the standard integral 

If·co 2n - ai d (2n )! n 2 
x e x = ----'--~= (234) 

- co 22nn!an+ 1/ 2' 

which with n = 1 and a = bl 2 gives us 

I I 

(235)(~) = (2~) 22 (~;~>/22 

1 
(236)

b 

so we now have 

(237) 

(238) 

m 
(239)

kT 

so that finally 

( m ) ~ (m~) (240)f (vJ = 27TkT exp - 2kT . 

This expression gives us the one-dimensional distribution of velocity. Ex­
amples are plotted in Figure 14. 

Any particular molecule could have a velocity component (or projec­
tion) along the x axis anywhere between - 00 and 00: this distribution func­
tion shows us that the most likely velocity component is zero, and that the 
probability density falls off with increasing I V-xi in a Gaussian way. Note 
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56 9. Kinetic-molecular theory of gases 

that the Gaussian will be wider for larger T and for smaller m. Also note 
that the average speed along the x-axis is zero: there is no net tendency 
fo r the molecules to be moving either left or right. (That is \vhy we had to 
evaluate b using (v;. ) rather than (vx ): the latter quantity is zero no matter 
what value b has.) 

0.0014 ,....,....~.....,~~....,...~~""T'"""~.........., 0.0014 


0.0012 300K 0.0012 N, 


0.0010 0.0010 

~ 0.0008 0.0008 

"" -; 0.0006 0.0006 
<=' 

0.0004 0.0004 

0.0002 0.0002 

0.0000 
2000 -2000 2000 

v / (m/5) v/( m/s) 

Figure 14 : The one-dimensional velocity distribution, showing variations 
with molecular mass and with temperature. The area under each curve is 
l. 

Notice that the one-dimensional distribution can be written 

( m ) ~ ( Elr) (241 )f (vJ = 27TkT exp - kT . 

The exponential term is the ratio of two terms, each with dimensions of en­
ergy: the "one-dimensional translational energy" of the molecule, Elf' and 
the "characteristic energy" kT. It is relatively easy for molecules to have 
translational energies less than or similar to kT. while it is quite improb­
able that they will have energies much greater than kT. This is our first 
example of the extremely important Boltzmann distribution. 

9.3.2 Three-dimensional speed distribution 

Now we want to go Oil to find the distribution of molecular speeds in threE' 
dimensions. Note that while the velocity component Vx in a single climen ­
sion can have any value between - 00 and 00, the speed of a molecule is a 
necessarily positive quantity, because; = v;. + v;, + V;. We will therefore 
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expect to find a probability density function F( v) that is nonzero only for 
positive v. (Atkins (pp. 26- 27) calls this function f ( v); I will call it F( V) to 
make a clearer distinction between it and the one-dimensional distribution 
of velocity components, f ( vx).l 

Eq. (22 5) gave the probability that a molecule has its x-component of 
velocity between Vx and Vx + dvx ' y-component of velocity between vyand 
Vy + dvy, and its z-component of velocity between Vz and Vz + dvz , as the 
product of the three independent probabilities. (Think of the probability of 
three people s imultaneously flipping coins all getting heads: it 's ! x ! x !.) 
That is , 

(242) 

(Notice that the exponent on the normalization factor is now ~. ) If you 
dN,. v v 

think of the function ;/7. as living in a three-dimensional "velocity space" 
whose axes are vx ' Vy' and vz , then the dvx dvy dvz part ofEq. (242) describes 
the volume of a small rectangular box, which is located a distance v from 
the orig in. Since we are looking for a distribution in spepd only. and we 
don 't care what direction the molecule is moving, we must add up all the 
p robabilities like that one that correspond to the same total speed. v. All the 
little boxes that correspond to the same speed forill a thin spherical shell of 
thickness dv a distance \' from the origin . The total volume of such a shell 

is 4n; dv, so to get our 3D speed distribution we must replace dvx dvy dvz 

w ith 4n ; dv, and replace ~; + ~. + V; with;. (You can reach this conclu­
sion more rigorously by changillg Eq. (242) to spherical polar coordinates, 
then integrating over the angular coordinates eand cp.) So our final distri­
bution of molecular spepds is 

' ) (m) ~ J. (m;)F 4 (243)(v = 27TkT m exp - 2kT 

Eq. (243) is called the Maxwell distribution of speeds. 
I think of this distribution in three parts: there's a normalization part, a 

4n ; part that counts all the possible velocities that correspond to the same 
speed, and there is an exponential "Boltzmann factor" that compares the 
kinetic energy of the molecule to kT. the average energy available at tem­
perature T. 
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What do these curves look like? The normalization part does not de ­
pend on v; the ; part is a parabola: the Boltzmann part is a Gaussian Cl'n ­
tered at zero. So at low speeds the curve looks like a rising parabola, then 
as ; increases the curve turns over and dives back into the baseline as the 
Gaussian becomes small. Figure 15 shows examples corresponding to the 
10 distributions we saw before. 

0.0020 0.0020 

JUOK0.0015 0.001 5 
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~ 0.001 0 0.00 10 


w:- Ile 
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Figure 15: The Maxwell distribution of speeds. The area under each of the 
curves is 1. 

10 Testing the Maxwell distribution 

I know of two good methods for experimentally checking the Maxwell dis ­
tribution of speeds: time-of-flight methods, including the use of slotted­
disk "velocity selectors ", as described briefly in Atkins on p. 29. and Doppler 
spectroscopy. 

In a velocity selector experiment, molecules leave a source through a 
small hole, and then pass through a series of disks with slots in them. The 
d isks are arranged on a rotating shaft and the slots are offset. so that for a 
particular speed of rotation only molecules of a particular speed can make 
it through all the slots. Which speed makes it through is controlled by the 
rotation rate of the shaft. These expf'riments were first done by Eldridge 
in 1927 O. A. Eldridge , Ph.'>"s. Rev. 30, 931 (1927).) A thorough analysis of 
s lotted-disk velocity selectors by C. J. B. van den Meijdenberg appears in 
A tomic and Molecular Beam Methods. G. Scoles . ed .. (Oxford, 1988) . . 
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59 10. Testing the Maxwell distribution 

In Doppler spectroscopy, the absorption spectrum of gas molecules is 
measured with very high resolution. Nowadays such spectroscopy is al­
ways done with lasers since they can provide the required resolution eas­
ily. A molecule moving toward a laser source w ill "see" a frequency that 
is higher than the frequency of the laser because of the Doppler effect. The 
shift is proportional to vx / c, where Vx is the component of the molecule's 
velocity along the laser beam direction and c is the speed of light. The ab­
sorption spectrum that appears therefore has lines that are broadened by 
the motion of the molecules, and if the line shape is measured carefully, the 
d istribu tion f ( vJ can be determined directly. 
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10.1 Applications of the Maxwell distribution 

10.1.1 Average speed (v) 

We use the usual approach to averaging things: 

00
(v) = 1 vF(v) dv (244) 

= (2~:T) ~ 4n ./;00 vJ exp ( - ;k~) dv (2 45) 

1
Use the standard integral 

00 2 ,
In+l e- ax dx = _ n_. _ (246) 

o 2i n+ 1 

with n = 1 and a = ZTT to give 

3 I'() (m) 24 . (247)
v = 2nkT n 2 (~) z 

ZkT 

= (~~) ~ (248) 

The average speed (v) differs from the root-mean-square speed M 
because it contains the numerical factor V8/ n = V2.546 rather than V3. 
Atkins (section l.3) gives (v) the symbol c. 

10.1.2 Most probable speed vmp 

The most probable speed is the speed at which F( v) reaches a maximuill. 
We find it by d ifferentiating F( v), setting the derivative equal to 0, and 
solving for vmp: 

(249) 

(250) 
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Lots of stuff divides out, leaving 

(251) 

(252) 

(253) 

The most probable speed has \/ 2 as the numerical factor multiplying ( knn :>: 

I 

; 

it is the smallest of the three measures of speed we have considered. 

10.2 Translational energy distribution 

Let's consider the Maxwell distribution in terms of translational energy 
rather than speed. We need to make a change of variable . However, we 
must be careful: we have to make sur!:' that probabilities calculated from thl' 
distr ibutions written in terms of the two different variables match up. In 
other words, if the energy distribution is G( Et r )' we must have G(E rr ) dE tr = 

F( v) dv. Therefore, we must be careful to change variables in the accompa­
nying d ifferential dv as well as in F( v ) itself. 

I 

We want to change from v to EtJ. We have Ltt = ~ mi . so v = ( 2~, ) c! • 

Then, dEtr = mv dv = m ( t~; , ) ~ dvand d\! = (21~£tr ) dt tr = (2~ ) ~ f~. ~ dE tr' 

In the Maxwell d istribution F( v) d\!, we replace v \,,:ith ( 2~r ) :>: 

I 

and dv with 
I I 

I ) :>: -2( 2m Etr dEtr to get 

(254) 

(255) 

All the dependence on mass has canceled: the translational energy distribu­
tion is the same fo r all molecules at the same temperature. Figure 16 shows 
this d istribution for temperatures of 300 and 700 K. 

The translational energy distribution rises very steeply from the origin; 
it has infinite slope at the origin, \vhile the speed distribution has zero slope 
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Figure 16: Translational energy distributions for gases. The distribution is 
independent of mass. 

there. If you draw a vertical line at any energy, the area under the distri ­
bution to the right of that line gives the fraction of molecules with transla ­
tional energy equal to or greater than that amount. In a simple theory of 
chemica l kinetics, it is only those molecules than can surmount an "activa­
tion barrier " and react; this distribution therefore plays an important role 
in kinetics. 

10.3 Hard-sphere collision rates 

Let's begin thinking about molecules colliding with each other. Clearly 
that can be a complicated field ; most of the richness of chemical reactions 
occurs in some sequence of bimolecular collisions, and if a singk simple 
theory could describe everything about those collisions chemistry wouldn't 
be nearly so interesting. Bu t. for starters. let's use a simple theory: think of 
molecules as little tiny marbles. The "hard-sphere" model can teach us a 
remarkab le amount about molecular collisions. 

I'll start out by thinking about one molecule as moving with speed vreJ 

through a forest of other, stationary, molecules. All the molecules are hard 
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spheres with diameter d. As our one molecule moves along, if its trajectory 
takes its center w ithin a distance d of the center of any other molecule. 
the two w ill hit. (See Figure 17.) In a time t , our molecule carves out a 
"collision cylinder" of volume nd2 vre1 t; any other molecules whose centers 
are in that cylinder will collide with it. The number of such molecules is just 
the volume of the cylinder times the number density of the gas, N = N / V. 
So the number of collisions one molecule makes per second, z, is 

(256) 

Figure 17: The collision cy linder; cf. Figure 1.20 in Atkins. 


If we rewrite N with the ideal gas law we find 


N = N = nNA = PNA = ~ 
 (257)
V V RT kT 

so that in terms of the pressure the collision rate is 

(258) 

The effective "target area" of the molecule, ni, is often called the col­
lision cross section and given the symbol (T . This idea of an effective size 
can be usefully extended to mallY kinds of events other than hard-sphere 
collisions. Events that are less likely than simply bouncing- for example . 
chemical reaction- will have smaller cross sections. 

Of course, all the molecules are moving, and not all with the same 
speed. When you include all the molecules ' motions, the appropriate value 

GeM July 19.2002 notcs-9 



64 10. Testing the Maxwell distribution 

for vre' is just the average speed, but calculated with the reduced mass of the 
colliding pair: 

1 

VreJ = (8:1~) 2 (259) 

w here, as usual, fl = m ,m2 /( m, + m2 ) and m, and m2 are the masses of the 
coll id ing molecules. (Once again, you can express {I in kg / mol and use R 
in the numerator rather than k.) 

If two different kinds of molecules are colliding, they might have dif­
ferent sizes as well as different masses; in that case, you use the average 
diameter d = (d, + d2)12 in Eg. (258) . 

The formulas I have given so far describe the number of collisions a sin­
gle molecule makes with other molecules (either the same kind or different) 
in a gas. In a gas that contains molecule types A and B, the number of A- B 
coll isions per second per unit volume is 

(2GO) 

(261) 

The number of B-B collisions per second per unit volume is calculated 
similarly, but we must divide by 2 to avoid counting the same collision 
twice: 

1 , 
(262)2BB = ZZBBh B 

(263)2 BB = ~crBB (:~~B) ~ (:~) ~ 
w here {I BB = mBI2 , crBB = nd~, and PH is the partial pressure of B. 

10.3.1 Mean free path 

We have seen how to calculate the number of collisions a particular molecule 
makes with other molecules per second, and also how to calculate the av­
erage speed of the molecule. With those two results it is easy to find the 
average distance a molecule travels between collisions, the mean free path, 
;\.: 

kT
;\ = (v)1z = - ­ (264)

V2cr P 
At one atmosphere and 300 K, for nitrogen and oxygen ;\ rv 160 nm. 
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11 Real gases 

11.1 P - V isotherms and the critical point 

If you put some gas into a piston-and-cylinder apparatus and slowly push 
the piston in, holding the apparatus at a constant tem perature, the pressure 
increases- you feel more and more resistance-as you reduce the volume. 
At some point, the p ressure suddenly stops increasing , and you can move 
the piston in quite fa r without increasing your pushing fo rce at all. Finally, 
there is a sudden change, and you find that pushing the piston in any far­
ther requires a very high force. See Figure 18 fo r an illustration. 

Figure 18: The P-V isotherm for a pure gas below the critical temperature. 

What is happening? At first, all the material is gas ; during that time, 
it behaves approximately according to the ideal gas law, and the pressure 
(thus the force pushing against the piston) goes up as the inverse of the 
volume. Then a t some point- when the pressure has reached the vapur 
pressure of the liquid a t the experimental temperature-the gas begins to 
condense, and both liquid and vapor exist in the cy linder. The pressure 
remains at exactly this pressure ulltil all the gas has been liquefied. At that 
point , the cylinder contains only liquid, and compressing this liquid further 
requires very high pressures. 

What happens if you raise the temperature and repeat the experiment? 
You fi nd that the "flat " section of the trace, where the liquification occurs, 
appears at higher pressure; you would have expected that, since you know 
that the vapor pressure increases with temperature. But here's something 
you might not have expected: the liquification sets in at a smaller total 
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volume than it did before. The point at which you have completely liqui­
fied the sample appears at slightly higher volume than before (because liq­
uids expand with increasing temperature). So the total volume range over 
w hich you have liquid and gas together goes down at higher temperature. 

As you raise the temperature more. the total volume range over which 
you have both liquid and gas in the cylinder gets smaller and smaller, until 
finally you find that above a certain temperature you never see both liq­
uid and gas in the cylinder! You compress and compress, and the density 
goes higher and higher un til it equals the liquid density, but you never 
see the phase change! The temperature at which the liquid-vapor phase 
change disappears is called the critical temperature TC' Look at Figure 19 to 
see the qualitative behavior of the isotherms. Atkins gives an accurate set 
of isotherms for CO2 in Figure l. 23 on page 3l. 

Figure 19: Isotherms of a pure substance. Successively higher lines occur 
at higher temperatures. 

It is obvious fro m this description that the ideal gas law does not apply 
to everything; if it did, the pressure would keep follow ing that 11 V curve 
forever. But even in the portion of the curve where only gas exists. the 
ideal gas law is not followed exactly. At intermediate and high densities. 
intermolecular forces become importallt, and the pressure deviates from 
the ideal gas prediction. Sometimes these deviations are large: factors of 
two or three (at several hundred bar pressure) are common. One way to 
think about such behavior is to try to devise " improved" gas laws that give 
more accurate d escriptions of the p - V - T behavior. There are two prices 
to be paid: one, the equations relating p, V, and Twill be more complicated, 
and two, the same equation will not work for all gases. We will need to 
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have parameters that can be changed to match the gas in question. 

11.2 The van der Waals equation 

One of the first, and still the most widely known. equations for real gases is 
the van der Waals equation. developed in 1873. It applies two corrections to 
the ideal gas law. First. it recognizes that the molecules themselves occupy 
some volume. so that the volume a single molecule has to fly around in is 
not the tota l volume of the contairlPr. but the volume of the container minus 
the volume occupied by all the other molecules. Second. it recognizes that 
the molecules have some attractive forces between them. that these attrac­
tive fo rces w ill diminish as the molecules get farther apart. and that their 
net effect w ill be to reduce the pressure. The van der Waals equation of state 
is 

p = nRT_ a (~ ) 2 (265)
V - nb . V 

The numbers a and b are different for each gas; a. which must have units 
(pressu re)(volume/ mole) 2. accounts for the attractive forces. and b. with 
units volume/ mole, accounts for the volume occupied by the molecules. 

The attractive term - a (V)2. which reduces the pressure, gets smaller as 
the d ensity decreases. as you expect. 

Table 1.6 in the Data section of Atkins gives van del' Waals constants a 
and b for about twenty gases. They can also be estimated from the critical 
temperature and pressure: 

(266) 

(267) 

b. as you might guess. is similar in magnitude to the volume of one mole 
of the liquid substance. For example. b for waler is 30 cm3/ mol. while the 
molar volume of liquid water is 18 cm3 / mol. b for benzene is 115 cm3 / mol; 
the molar volume of liquid benzene is 89 cm3 l mo!. 

You usually see the van der Waals equation written in terms of the mo­
lar volume Vm = V / n: 

RT a 
(268)p = V -- b - 1 12 

m Vm 

\!;n is the volume occupied by one mole of gas; the higher Vm. the lower the 
density and the less important intermolecular forces will be. In the limit of 
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low densities (that is, la rge molar volumes), the gas behavior approaches 
that of an ideal gas. This is easy to see in the van der Waals equation: as 
Vm ge ts large, it dominates over b in the denominator of the first term, and 
makes the second term become small; the equation then reduces to the ideal 
gas law p = RTI Vm . 

11.2.1 Critical behavior in the van der Waals equation 

To what extent does the van der Waals equation describe condensation and 
critical behavior? The subcritical isotherms in Figure 19 have sharp corners 
at the onset and completion of condensation; no smooth polynomial func­
tion can have corners like that, because polynomial functions have con­
tinuous deriva tives. So we cannot expect the van der Waals equation to 
reproduce the isotherms exactly. But it does show critical behavior. 

Figure 20 shows isotherms calculated from the van der Waals equation 
using the constants for CO2 (a = 3.640 atm L2 mol- 2 , b = 0.04267 L mol - I.) 
At temperatures below the critical temperature Tc' the curves show "loops" 
(oscillations) in the region that corresponds to condensation. There is a 
technique, called the "Maxwell construction" , fo r replacing these oscilla­
tions w ith flat lines, to generate isotherms that look more like the real thing. 
(Atkins describes this trick on page 36.) As temperature increases, the loops 
diminish in amplitude, until finally they disappear; at one particular tem­
perature, the curve has a slope of zero exactly at one molar volume, and 
negative slope everywhere else. This gives an isotherm that looks like the 

critical isotherm; it occurs at a temperature of T~dw = 3~gR' which with the 
van der Waals constants for CO2 comes out to be 307.9 K. The experimental 
crit ical temperature Tc is 304.1282 K. At temperatures above Tc the van der 
Waals isotherms qualitatively resemble the experimental ones. 

11.2.2 Accuracy of the van der Waals equation 

To quote Levine' s physical chemistry book: "The van der Waals equation 
is a major improvement over the ideal-gas equation but is unsatisfactory 
at very high pressures and its overall accuracy is mediocre." With it you 
can estimate properties of dense gases with accuracies much better than 
the ideal gas law, but you should not expect few-percent accuracy. 

There are several other equations of state commonly lIsed for dense 
gases. Some use two adjustable parameters, just as the van del' Waals equa­
tion does; some use more parameters in hopes of higher accuracy at the 
cost of more complication; and one, the virial equation of state, replaces the 
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o 
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Figu re 20: Isotherms for CO2 from the van der Waa ls equation. From the 
bottom , the curves represent isotherms at 246.3, 292.5, 307.9 , and 338.7 K. 
w hich represent. respective ly, 0.8, 0.95, 1.0, and 1.1 times 7;vdw The dashed 
line g ives the id eal gas isotherm at 307.9 K. 

constan ts for each gas with functions of temperature, giving an effectively 
infinite n umber of adjustable paramters. We will consider two of these. 

11.3 The Redlich-Kwong equation 

A two-param eter equation that is more accurate than the van d er Waals 
equa tion was d eveloped by Redlich and Kwong (Chem. Rev. 44, 233 (1949)). 
This equation treats the molecular excluded volu me in the same way the 
van de r Waals equation does, but uses a different approach to the effect of 
the a ttractive interactions. The Redlich-Kwong equation is 

RT a 
(269)

p = Vm - b - V;n(Vm+ b)T1/ 2 

The Red lich-Kwong a and b are not the same as the corresponding pa-
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rameters in the van der Waals equation (even the units of a are different.) 
The equations to es timate them from critical data are 

(270) 

(271) 

Like the van d er Waals equation (and for the same reasons), the Redlich ­
Kwong eq uation shows oscillations in the condensation region of a P - \/ 
isotherm. Its accuracy in the gas and supercritical regions is much bet­
ter than the van der Waals equation, and it even describes compression of 
some liquids fairly well. It is very widely used , especially in eng ineering. 

Atkins, in Table l.7, shows several other equations of state. Many more 
(hundreds!) have been developed for particular pressure and tempera­
ture ranges for particular sets of gases. This game of find -a-better-analytic­
equation-of-state is a classic example of empirical model-building: trying 
to mode l complicated observed behavior with a simple equation of a few 
adjustable parameters, rely ing on underlying physical understanding of 
the important processes seasoned with curve-fitting against real data. 

11.4 The virial equation 

The granddaddy of real-gas equations of state is the virial equation of state. 
which is a Taylor series expansion of the deviations from ideal gas behavior 
in the va riable 11 Vm . The expansion is made separately at each tempera­
ture. The virial equation is most often vvritten as 

B(Tl C( T) )pv. = RT ( 1 + -- + -- + ... (272) 
m V \ /2 

m rn 

The function B( T) is called the second virial coefficient, C( T) is the third 
virial coefficie nt, and so on. Notice that if all the virial coefficients are zero . 
the virial equation turns into the ideal gas equation. The temperature­
dependent coefficients therefore tell us something about the interactions 
between the molecules. B( T) d escribes the interactions betwen pairs of 
molecu les; C( T) d escribes "three-body " interactions , and so on. 

B( T) has been measured (at dozens of temperatures) for hundreds of 
gases; C( T) is known for a few dozen gases; only a few D ( T) values have 
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been measured. At low to medium pressures, B( T) alone is sufficient for 
accuracies better than one percent in most cases. 

At low temperature and low density, the attractive interactions between 
the molecules are more important than the repulsions, so that the pressure 
in a sample of gas is less than the ideal gas law predicts; B( T) is therefore 
negative at low temperatures, and drops steeply at very low T. At high 
temperatu re, the molecules are moving fast enough that they do not really 
fee l the weak attractive forces, and they act more or less like hard spheres; 
B( T) therefore reaches a value roughly like the liquid density at high T and 
decreases very slowly at very high T. 

It is possible, through statistical mechanics, to calculate the virial coeffi­
cients if the intermolecular potential is known. For spherical particles (not 
necessarily hard spheres: this works for realistic potentials) the formula is 

where v(r) is the intermolecular potential function. For realistic v(r) this 
integration usually has to be done numerically, but there are good tech­
niques for doing so and the calculation is not very hard. (I've done it many 
times, and have computer programs available for the job.) This makes a 
nice test of a model potential function, since B( T) can be determined ex­
perimentally to with in a few percent. (Actually, Eq. (273) is approximate: 
it is the prediction of classical mechanics, which is usually very good at 
room temperatu re and above but is inaccurate at low temperature. There 
are quantum corrections, also not hard to calculate , which must be used at 
low temperatures. See Hirschfelder, Curtiss, and Bird , Molecular Theory of 
Gases and Liquids, for details .) 
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12 First Law of thermodynamics 

We al ready calculated the average kinetic energy of the particles in an ideal 
gas: (E tr ) = ~ kT. If the particles have no other kinds of energy (they cannot 
rotate, for example), then we can regard the sum of all the particles ' kinetic 
energies as the total energy of the gas. We can do any thing at all to this 
sample of gas, but if in the end, we have the same number of particles and 
we bring them back to the same temperatu re, the total energy will be the 
same. This total energy, which is generally called the internal energy of the 
gas, is a state function: it depends only on the present condition of the gas 
sample and not on its previous history. 

The internal energy is an extensive property: if we d ivid e the sample ex­
actly in half (by p utting a partition in the container, for example), each half 
has exactly half the internal energy the original sample had . The volume 
of the gas is another extensive property. The pressure and temperature, 
though, are not extensive: if we divide the sample of gas in half, each half 
has the same pressure and temperature as the original sample. We say that 
pressure and temperature are intensive properties. Internal energy, p res­
sure, temperature , and volume are all state functions. 

How might we increase the internal energy of the gas? Obviously, we 
must increase its temperature (or the number of gas molecules.) All the 
myriad ways of increasing the sample's temperature fall into two great cat­
egories: we can either heat the gas , or we can do work on the gas. 

Heating the gas is easy: w e place the gas into a container whose walls 
cond uct heat, then we place that container in contact with some object 
whose tem perature is higher than that of the gas (for instance, a beaker 
of hot w ater), and we wait. After a w hile, the gas and its container will 
have warmed up, and the formerly warm object will have cooled off. until 
the two tem peratu res are the same. At that point, there w ill be no morC' 
heat flow. 

Doing work on the gas is also simple: we put the gas into a container 
whose walls do not conduct heat. but whose volume is adjustable (for ex­
ample, a piston-and-cylinder w ith vacuum-jacket w alls). Then we com­
press the gas. The work we do in this process is just the force applied times 
the distance over w hich the force operates: when the pressure is p, if the 
piston has face area A and we push it through a small d istance dx, the work 
we do is dw = pA dx. Adding those small amounts of work up over some 
fin ite change in volume gives the total work done on the gas . Compressing 
the gas in this way increases its temperature. 

The fi rst law of thermody namics , which is essentially a statement of 
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conservation of energy, says that the change in total energy of any closed 
system (ideal gas or otherwise) during any process is equal to the sum of 
the heat flow into the system, q, and the work done on the system, w: 

tc.E = q + w (274) 

Calling the system closed means that no molecules can enter or leave. 
In most problems of interest to chemists (though not to chemical engi­

neers, w ho deal all the time with stuff flowing through pipes) the sample 
has no important external energy (overall kinetic or potential energy), so the 
total energy E can be replaced with the internal energy U to give 

tc.U=q + w (275) 

Contrary to popular usage, heat in thermodynamics is not something 
that a sample contains; instead, heat is a process, all energy transfer be­
tween two things because of a temperature difference. It makes no sense 
in thermodynamics to ask "How much heat does 3.4 g of iron contain at 
343 K and one bar pressure?" Heat is not a state function. Even so, the olel 
caloric theory, which regarded heat as a fluid that moved from one object 
to another, is so deeply ingrained into our language that it was impossible 
for me to avoid saying "a container whose walls conduct heat" above. TIl(' 
idea of heat-as-fluid also persists in terms like "heat capacity" and "heat 
flow ". 

(I nCidentally, an early serious attack on the caloric theory was made 
in 1798 by Count Rumford, an expatriate American who lived in Mas­
sachusetts but supported England in the American Revolution and moved 
to Europe after the war. He was in chargE' of the Bavarian Army, and recog­
nized that enormous "amounts of heat" vvere produced during the boring 
of cannons; this production of heat contradicted the prevailing idea of con­
servation of heat. In fact he measured that a cannon borer, driven by one 
horse for 2.5 hours , produced enough heat to raise 27 pounds of water from 
ice-cold to the boiling point.) 

12.1 Example: work against constant force 

As an example of a ~iTllpl(' calculation using the first law, consider the fol­
lowing problem: 

A sample of ideal gas at a pressure of 2 atmospheres and at room tem­
perature is contained in a syringe. The cross-sectional area of thE' plungE'r 
is 4 cmz, and the external pressure is 1 bar. The mass of the plunger is 109. 
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We let the plunger rise slowly (it rises because of the higher pressure in­
Side). We let it rise by 2 em, then stop it. The gas inside is now cooled; as it 
warms back up to room temperature. how much heat flows from the room 
into the gas? 

Solving this problem requires two insights: first. that since the gas ends 
at the same temperature as it began. its internal energy is unchanged (t. U = 
0). and second, that the force against which it is pushing is constant, so that 
we can calculate the work the gas does with the formula w = Ft.x. 

The force against w hich the plunger must work is the force of the exter­
nal atmosphere plus the weight of the plunger. that is, 

Fext = PextA + mg, (276) 

where Pext is the external atmospheric pressure, A is the area of the plunger 
face, m is the mass of the plunger. and g is the acceleration of gravity. Plug­
ging in the values and changing units appropriately, we find f~xt = 40.l N. 
so that w = Ft. x = (40.1 N)(-0.02 m ) = - 0.802]. I have used the con­
vention that work done on the system is positive, w hile work done by the 
system on the surroundings is negative; this convention is the most com­
mon one and is adopted by Atkins. 

Since t. U = 0, we have q = - w. and 0.802 J of energy flows as heat 
between the room and the gas to bring it back to room temperature. 
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12.2 General p V work 

In the piston-and-cylinder apparatus, the work done against external pres­
sure Pext is 

dw = - Pext A dx = - Pext dV (277) 

where dV is the change in volume. We can regard any expansion against an 
external pressure, independent of the shape of the container, as a collection 
of small pistons, and the overall work done in any expansion is still 

dw = - Pext dV. (278) 

If the volume change is positive (the system gets bigger), the work is 
negative; this agrees with our convention that work do ne on the system is 
positive. 

12.2.1 Expansion against constant external pressure 

We have examined this case already: if the external pressure is constant, 
then we have 

(279) 

Figure 21: Work done in expansion of the system. If the system moves in a 
cyclic way, eventually returning to point A. the work done is given by the 
area enclosed within the cycle on the diagram. 

We did not know, or care, what the pressure of the gas was; it is only 
the external pressure, against which the system expands, that matters. That 
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is still true even if the external pressure changes during the expansion, so 
long as we know what it is; that is, 

jV2 
W = - Pext(V )dV, (280) 

. VI 

and the work is the area under the curve Pext (V) on a P - V diagram. N0­

tice (Figure 21) that the work depends on what "path" we follow on the 
diagram. If we move along path ABC, the work done on the surroundings 
is larger than if we move along path ADC. 

In fact. we can think about recompressing the sample somehow, bring­
ing it back to point A. If we expand along route ABC, we do work WA BC 

on the surroundings; then to move back along route CDA. we must do 
w ork w CDA on the system. The net work we extract from the system (think 
"steam engine") is the area between the two curves. 

12.2.2 Reversible processes 

It is usefu l to describe a sort of process in thermodynamics that corresponds 
to "frictionless" processes in mechanics. The appropriate sort is one that is 
nearly at equilibrium all the way through. Of course, a system truly at 
equilibrium (internally and with its surroundings) does not change with 
time; that is essentia lly the definition of equilibrium. But, a system very 
slightly displaced from equilibrium will move; if you change the displace­
ment very slightly in the other direction . the motion will reverse direction. 
Such a process, held nearly at equilibrium all the way through, is called a 
reversible process in thermody namics. 

As an example, consider our piston and cylinder apparatus expanding 
against external pressure . If we adjust the external pressure to be exactly 
eq ual to the internal pressure, the piston will not move at all. If we then 
very slightly reduce the external pressure. the piston w ill move slowly out­
ward; we can stop it. and in fact reverse it, by a very small increase in the 
external pressure. Ifwe let the piston move outward very slowly, by contin­
uously adjusting the external pressure (0 be very slightly below the internal 
pressure, then we are carrying out a reversible expansion of the system. 

A true reversible expansion is not a practical thing to do, because it 
takes foreve r to make a finite change in the volume. Therefore, real devices 
do not act reversibly. Reversible processes nevertheless play an important 
role in thermodynamics for several reasons. First. some devices do act very 
nearly like reversible ones (for instance, many electrochemical processes 
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occur nearly at equilib ri um.) Second, and more important, it is often possi­
ble to calculate changes in a system' s state functions d uring some process 
easily if we assume the process occurs reversibly; since state functions do 
not depend on paths, we can substitute a reversible change for the real one 
and get the same answer w ith less effort. We cannot, of course, use this 
trick for calculating q or w, since those are not state functions . 

Reversible isothermal expansion of an ideal gas If we allow an ideal gas 
to expand reversibly, then we know that Pext = P during the entire expan­
sion; we can therefore replace the external pressure Pext with the system 
pressure P in the expression for the work. Let us say we allow our system 
to expand reversibly from state 1, (Pl' Vl , T) to state 2, (Pz, \12, T). How 
much work is done? 

We don' t know yet. Many different paths could carry the system from 
state 1 to state 2, and before we can calculate the work we must specify a 
path . We can do that by specifying T at each point on the path; since V is 
the independent variable, and n is held constant, the specification of T at 
each point suffices to uniquely identify a path. 

In the reversible isothermal expansion, we keep the temperature of the 
gas constant throughout the expansion (perhaps by immersing the cylinder 
into a large constant- temperature bath.) Then we have 

liz 

W =- [ Pext( V) dV (281) 
.\1] 

Since the expansion is reversible we replace Pext with p: 

j V2 = - p(V) dV (282) 
VI 

= _ j V2nRTdV (283) 
VI V 

j llz dV (284)= - nRT VI V 

= - nRT [ln V]~ (285) 

= - nRTln (~) (286) 
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12.3 Enthalpy 

For any process at constant volume. if we consider no work other than pV 
work. then w = O. so that 

(287) 

(where the subscript V indicates constant volume.) 

If. instead . we carry out a process at constant pressure. then 


(288) 

so that 
(289) 

This equation suggests that it might be useful to defi ne a new state function 
H: 

H = U + pV (290) 

H is called the enthalpy. It is clearly a state function since U. p. and V are 
all state functions. Now we have 

(291) 

The change in enthalpy of a system that undergoes a process at constant 
pressure is just the heat that enters the system during the process. H. like 
U and V. is extensive. 

12.4 Heat capacities 

How does the system tem perature change for a given amount of heating? 
If an amount of heat q enters the system. the tem perature changes and we 
define the heat capacity C from 

dq ::-c: edT (292) 

or 

C = dq (293)
dT 

Since other things may happen to the system as it is heated (for instance. 
it might expand . or its pressure might rise. or it might undergo some chem­
ical reaction). we can expect d ifferent temperature changes under d ifferent 
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conditions. It is conventional to define two kinds of heat capacities, Cv for 
the heat capaci ty w hen the volume is held constant, and Cp for the heat 
capacity at constant pressure. Then we have 

(294) 

(295) 

Cp ~ Cv for a given system because some of the heat entering a sys­
tem at constant pressure can leave in the form of w ork done on the sur­
roundings. At constant volume it is not possible to do expansion work on 
the surroundings, so all the heat that enters serves to increase the system's 
temperature. 

Heat capacity is extensive; if you double the amount of material in your 
system, you w ill have to add twice as much heat to get its temperature to 
change by the same amount. It also applies to entire systems; the system, 
for example, might be an entire combustion calorimeter, including the sam­
ple, the oxygen gas, the steel bomb enclosing the sample and gas. the water 
surrounding the bomb, and the thermometer. 

It is trad itional to define intensive heat capacities for pure substances in 
two ways. One, the specific heat (or, more recently, specific heat capacity), 
is the amount of heat required to raise 1 g or 1 kg of a specified substance 
by 1 K (typically at constant pressure). The other is the molar heat capacity, 

CV.1n or Cp.1n' which is the heat capacity per mole of substance. 

12.4.1 Heat capacities for ideal gases 

Let us find the relation between Cv and Cp for an ideal gas. Begin with 

Differen tiating with respect to T at constant p gives 

(296) 

and from the ideal gas law w e can evaluate the last term to give 

(aH) (au) nR (297)aT p = aT p t- Pp 
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For an ideal gas, U and H are both functions of T alone; neither depends 
on V or p (since the product pV is constant). Therefore for all ideal gas 

dU 
(298)

dT 

We therefore have 

(aH) = Cv+pnR (299)
aT p p 

Cp = Cv + nR (300) 

Thermodynamics does not give us theoretical tools to predict heat ca­
pacities: they are quantities that must be measured for each substance. Heat 
capacities for most substances change with temperature; an exception is 
that for a monatomic ideal gas, for which we calculated from the kinetic 
theory of gases that U = ~ nRT. We therefore have for a monatomic ideal 
gas that 

(301)Cv = (~~) v = ~nR. 
The heat capacity at constant pressure is therefore 

5 
Cp = Cv + nR = 2, nR. (302) 

The heat capacity ratio Cpl Cv is traditionally called , ; it plays an important 
role in the study of gas dynamics. For a monatomic gas the heat capacity 
ratio is 

Cp ~ nR 5 , --- -- ­ (303)
- Cv - ~ nR - 3 ' 

This value is observable experimentally and is accurately l.667 for noble 
gases at low densities. 
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12.4.2 Reversible adiabatic expansion of an ideal gas 

We now have the tools to analyze a reversible adiabatic expansion of a gas. 
We did the reversible isothermal expansion before; the adiabatic expansion 
is a little harder because the tempC'rature of the gas changes as the C'xpan­
sion goes on. 

Adiabatic m eans no heat flows: q = 0, so !3 U = w. We can find two 
diffe rent expressions for dw: 

dw = ­
nRT

pdV = -­dv 
V 

(304) 

dw = dU = Cv dT (305) 

Equating those two and dividing by T separates the variables: 

dT dV
Cv - = - nR- (306)

T V 

Integrate both sides: 

(307) 

If we assume that Cv is independent of temperature (true for a monatomic 
ideal gas , an excellent approximation for many diatomic gases at ordinary 
tem peratures), we can integrate both sides to get 

(308)Cv ln (~~) = - nRln (~) . 
Now we know how the temperature will change during the expansion. 

Notice that for an adiabatic expansion (V2 > VI) ' the gas cools. Given the 
initia l temperature and volume, and the final volume, you can now fi.nd the 
fina l tem perature ; since C\. is constant you then have simply !3 U = CvL\ T, 
and since q = 0 the work done by the gas isjust - !3u. 

Application: supersonic expansions A common laboratory technique in 
spectroscopy and collision experiments is to use a reversible, adiabatic ex­
pansion from high to low pressure to cool a gas. Let me show an example 
calculation. 
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82 12. First Law of thermodynamics 

We know for an ideal gas that Cp = Cv + nR. We can therefore substi ­
tute for nR in Eq. (308) to get 

Cv ln (~~ ) = -( Cp - Cv) ln (~) (309) 

and writing Cp / Cv = l' gives 

In (~) = ( l - 1' ) ln (~) (310) 

It is more convenient in the laboratory to think about the ratio of initial and 
final pressures in the expansion than the ratio of volumes. For ideal gases, 

(311) 


and substituting for the ratio of volumes gives 

In (T2) = (1 - 1') 111 (T2Pl ) . (312)T, T,P2 

Using a In b = In( ba) and exponentiating both sides gives 

(313) 


and w e can gather terms to get 

( ~~ ) ~ = (~~) ~- I (314) 

(~;) = (~~) ,~ I (315) 

In a typical ap plication in the laboratory, a monatomic gas (most oftell 
heli um or argon: l' = 5/ 3) expands from a pressure of about 2 bar and a 
temperature of 300 K to a pressure of 10-2 mbar. We then have 

2T2 (10- ) N = (5 x 10-6)215 = 00076 (316)
T\ 2000 . , 
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12. First Law of thermodynamics 83 

so that the final temperature is 2.3 K! This experiment can be carried out in 
an apparatus that uses a medium-size diffusion pump (20 cm throat) and 
a vacuum chamber perhaps a foot in diameter. One of the most impor­
tant applications is in spectroscopy of medium-sized molecules; at room 
temperature their spectra are hopelessly complicated, but at 2 K only a few 
rotational levels are populated and it is much easier to figure out what is 
going on. 

12.5 Standard enthalpy changes 

12.5.1 Hess 's law and enthalpies of formation 

Well before the First Law was know n, Hess formulated the Law of Constant 
Heat Summation: t.U or t. H for any chemical reaction is is independent of 
the path, and in particular, independent of any intermediate reactions that 
may occur. (Hess made a real discovery: the heat evolved in most processes 
was not independent of path, but for chemical reactions carried out at con­
stant pressure , it was!) This means that if you can fi nd any set of reactions 
which can com bine (on paper, even if not in the lab) to transform your re­
actants to your products , and the t. H has been measured under some con­
ditions for each, you can figure out t.H for the reaction you are interested 
in. The use of Hess's Law is usually covered in general chemistry. 

Because of Hess 's Law, it is useful to tabulate "standard enthalpies " for 
specific reactions of many substances; if the reactions are chosen carefully, it 
will then be possible to calculate enthalpy changes for many other reactions 
involving those substances. The most w idely tablulated standard enthalpy 
is the standard enthalpy of formation, w hich gives the enthalpy change for 
the reaction that forms one mole of the substance in question from the con­
stituent elements in their "standard states" (that is, the most stable pure 
form at the temperature in question.) The enthalpy of formation of any 
p ure element in its stand ard state at a specified temperature is defined to 

be zero. 
To make such reaction enthalpies truly standard , it is necessary to spec­

ify both the pressure and the temperature under w hich the reaction occurs. 
The temperature is generally specified explicitly; most enthalpies of forma­
tion are given at 298. 15 K, but values are sometimes availble at ot her tem­
peratures. For many years the standard pressure w as 1 atm, but recently 
the standard has been changing to 1 bar. 

So, for example, the standard enthalpy of formation of cyclopropane at 
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298. 15 K is the heat absorbed by the chemical system when the reaction 

(317) 

is carried out at 1 bar pressure and 298.15 K. The symbol for this quan­
tity is l',.fH2981S ' The l',. indicates a change in a state function. (It is impor­
tant, when looking at tables of thermodynamic functio ns, to always keep 
in mind what kind of change the tables refer to!) The subscript f indicates 
what kind of change: in this case, it is a formation reaction. H, of course, 
tells you what quantity is being monitored during the change: the enthalpy. 
The superscript <> indicates "standard state ", which is some agreed-upon 
set of conditions which taken together with the temperature is sufficient to 
fix the state of the system. For systems whose chemical composition is oth­
erwise specified (as here: we are considering one mole of cyclopropene be­
ing formed from its elements) , the only condition implied by the standard­
state symbol is the standard pressure. Finally, the temperature is listed as a 
subscript. The older practice (now discouraged) was to attach the subscript 
f to the H rather than to the l',. . 

Example Let us evaluate the enthalpy change in the isomerization of cy­
clopropane to propene at 298 K and 1 bar pressure. We can construct the 
reaction from two formation reactions, as follows: 

C3H 6(g) (cyclopropane) -----.., 3C(5) + 3H z(g) (3 18) 

3C(5) + 3Hz(g) -----.., C3H 6(g) (propene) (319) 

C3 H 6 (g) (cyclopropane) -----.., C3 H 6 (g) (propene ) (320) 

Eq . (3 19) is the formation reaction for propene; the corresponding en­
thalpy change is the enthalpy of formation (also called heat of formation) 
of p ropene, 20.41 kJl mol. Eq . (31 8) is the reverse of the fo rmation reaction 
of cyclopropene; the enthalpy of formation of cyclopropene is 53.3 kJl mol, 
so the enthalpy change in Eq. (318) is - 53 .3 kJ / mo!. The overall enthalpy 
change is the sum of those two, or - 32. 9 kJ/ mo!. The negative sign indi­
cates that heat is released when cyclopropane isomerizes to propene under 
those cond itions; the reaction is exothermic. 

12.5.2 Reactions at nonstandard temperatures 

What happens if you want the enthalpy change for a reaction at some tem­
perature other than 298.15 K? You must think of you r reaction as occuring 
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in a series of steps. calculate the enthalpy change for each. then sum them 
up to get the overall enthalpy change. For example. if we wanted to know 
the enthalpy change for the isomerization of cyclopropane to propene at 
350 K and 1 bar pressure. the following series of steps would be useful: 

1. 	 Cool cyclopropane from 350 K to 298.15 K under constant pressure of 
1 bar. The enthalpy change for this process is 

l 298.15 

l'1 H = ~ dT (321) 
. 350 

w here C~ is the constant-pressure heat capacity of cyclopropane. 

2. 	 Convert cyclopropane to propene at 298.1 5 K at 1 bar; the enthalpy 
change for that process we already worked out to be l'1 r H~ = - 32.9 
kJ / mo!. 

3. 	Heat propene from 298.15 to 350 K. The enthalpy change for that 
process is 

350 

l'1H = 1 cP dT (322) 
298.15 p 

where in this case C~ is the heat capacity of propene. 

To carry out this program we need to know the two heat capacities as 
functions of temperature. The NIST WebBook gives the data shown in Ta­
ble 4; it is plotted in Figure 22. 

When 1 look at the heat capacity data on a plot. it seems like a linear 
fi t w il l be perfectly reasonable; such a fit is show n. for both compounds. 
With slopes and intercepts from those fits it is possible to carry out the 
integrations correspond ing to the heating and cooling stages. Note that it 
is really the d iffe rence between the two heat capacities we need: 

1298.15 	 1 350 
l'1 H = ~ dT + l'1 r H Z98 15 + C~ dT (323) 

350 298.15 
350 

= l'1 r H 298.15 + 1 q - ~ dT 	 (324) 
298.15 

350 

= l'1 r H 298 15 + 1 l'1Cp dT (325) 
298. 15 
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Table 4 Heat capacity data for cyclopropane and propene, from the NIST 
Chemistry WebBook (webbook. ni s t . gov/ chemistry). 

T I K Cp (propene) 1 J/ mol TI K Cp (cyclopropane)I ]lmol 
298.15 63.79 298.15 55 .6 
299.33 64 .73 300.48 56.48 
300. 64.71 313.9 59.29 
320. 67.89 316.7 59.27 

323.15 67.88 325.1 60.90 
333.86 70.04 332.8 62 .17 
340. 7l.03 333.70 63.l8 

348.15 7l.78 338.9 64. 27 
360. 74 .13 339.6 63 .26 

368.46 70.17 

75 

• cyclopropane 
0 propene 

70 • 

-0 
E 

;::::; 65 
~ 

---"- 0 •U • 
60 • 

55 
280 300 320 340 360 380 

T/K 

Figure 22: Heat capacity data from Table 4. Lines are fitted through both 
sets; for cyclopropane, the slope is 0.200]lmo1K and the intercept is - 4.16 
JI mol, while for propene the slope is 0.1 58 JI mol K and the intercept is 
17.19 J/ m o!. 
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Writing C~ = a + bT, C~ = c + dT, I have ~Cp = (c - a) + (d - b)T, so 
that 

350 

~H = ~rH;9S 1 5 + 1 ~Cp dT (326) 
29S.15 '350h= ~rH;gS I 5 + (c - a) + (d - b)TdT (327) 

. 29S.15 

= ~rH;9S 1 5 + [(c - a)T+ (d- b)r]350 (328) 
. 29S.15 

,,2] 350 
= ~rH;9S 15 + [(17.19 - (-4.1 6) ) T + (. 158 - .200 ) r (329) 

. 29S.1 5 

= -32.9 kJ I mol - 304 JI mol (330) 

= - 33.2 kJ/ mol (331) 

You should be able to see how to take into account other kinds of pro­
cesses that relate your reaction conditions of interest to the standard condi­
tions. If you want to carry out the reaction at some pressure other than one 
bar, you can evaluate the enthalpy changes for an isothermal , reversible 
compression or expansion before and after the reaction. If there is a phase 
change in reactants or products at a temperature intermediate between 
your reaction temperature and the known reaction enthalpy, you must in­
clude the enthalpy for that phase change (using ~fus H or ~vapH) in your 
thermodynamic path. The whole game is to be able to identify some path 
that will get you from your reactants a t the desired conditions to products 
at the desi red cond itions, and for which you are able to evaluate the en­
thalpy changes fo r each step. Because H is a sta te function, it does not 
matter whether the path you choose is related to the actual experimental 
path at all. 

12.6 Other kinds of standard enthalpy changes 

Many processes other than "formation from elements " also have standard 
enthalpy changes that can be looked up . You have already met the stan­
dard enthalpy changes for phase changes, ~fusH and ~vapH; for sublima­
tion there is also a ~sub H. In all cases, these values give the amollnt of heat 
absorbed by one mole of the substance while it und ergoing a phase change 
at constant temperature and pressure (typically, though by no means al­
ways, the transition temperature at 1 bar pressu re). 

One of the most important standard enthalpy changes is that for com­
bustion, not for any theoretical reason but because en thai pies of combus­
tion ~sub H~ are relatively easy to measure fo r many substances. In fact. 

GeM July 19.2002 notes- 13 



88 12. First Law of thermodynamics 

it is nearly impossible to carry out many "formation " reactions cleanly. 
Therefore. most enthalpies of formation that appear in tables have in fact 
been determined by measuring the heats of combustion of the reactants 
and products and using Hess's Law to calculate the heats of formation. 
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13 Mathematical interlude 

13.1 Properties of partial derivatives 

For many kinds of thermody namic calculations, it is useful to be able to 
manipulate partial derivatives easily. In this section I w ill give, without 
proof, several formulas that can be used in such manipulations. Most of 
these are listed in the section called Further Information I near the back of 
Atkins. 

13.1.1 Chain rule 

The chain rule works for partial derivatives just as w ith ordinary deriva­
tives, so long as the same variable is held constant for all the terms: 

(332) 


For example, 

13.1.2 Inversion rule 

Just as for regular derivatives, you can sw itch the" differentiator " and the 
"differentia tee " if you invert the derivative (this is the great insight of the 
Leibniz notation for derivatives:) 

1 
(334) 

(~) z 

This property is often very handy when you work with real gases. The van 
der Waals equation is d ifficult to write in the form Vm = f (p, T), but you 
sometimes need derivatives of Vm with respect to the other variables. Let 
us calculate the isothermal compressibility of a van der Waals gas: 

(335) 

(336) 
V (ap )av T 
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The van der Waals equation is most conveniently written in terms of Vm , so 
apply the chain rule: 

(337) 

(338) 

(339) 
v ( ilP)m av'n T 

The remaining partial derivative can be evaluated easily fro m the van der 
Waals equation; evaluating it and rearranging gives 

V2(V _ b)2
K - m m (340) 

T - RTV~ _ 2a ( Vm _ b)2 

13.1.3 Shifting the constant quantity 

If you need to change which of several variables is held constant during a 
partial differentiation, you must add a correction term: 

(341)(~~) z ( ~~) y + (~;) (~~)= x z 

13.1.4 Permutation rule 

This rule is a version of the chain rule that lets the constant quantities shift. 
Note the "permutation " that occurs among the numerator, denominator, 
and subscript , and also note the (surprising , at first) minus sign. 

(342) 


Real gases have nonzero Joule-Thompson coefficients, W 

(343)~ = (~;) H · 

A quantity that is easier to measure than ri is the isothermal Joule-Thompson 
coefficient, 

(344) 
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We can find a relation between these two with the permutation rule. 

(345)~ = (~;) H 

(346)=- (~~)P(~;)T 

(~)T 

(347) 

(~~) P 

~T (3 48)
Cp 

13.2 Exact and inexact differentials 

The existence of equations of state means that it is only necessary to specify 
two of the three variables p, V, T for a system contai ning a single substance. 
Therefore, thermodynamic functions for one-component systems can be re­
gard ed as functions of only two variables (rather than th ree), and which 
two to choose is purely a matter of convenience. Usually U is thought of as 
a function of T and Vand H as a function of T and p; some formulas take 
on somewhat simpler forms if those choices are made, but there is nothing 
magic about them. 

If we want to know a change in U during some process, we can write 
the total djfferential of U as 

dU = (au) dT + (au) dV (349)
aT v av T 

All sorts of quantities in thermodynamics have to tal differentials that can 
be w ritten in that way. Carrying out integrations of such quantities, to find 
overall changes during some process, usually requires knowing how T and 
V change while the process is going on (in the language of multivariable 
calculus, you must be able to carry out a "line integral " in the T, V plane.) 
For some special differentials, called exact differentials, it does not matter 
w hat path in the T, V space is used; the integral is the same in any case. 
These are the d ifferentials of state functions. How can we tell whether a 
particular differential is exact or not? 

There's a rule, called the Euler criterion , for deciding whether a partic­
ular differential is exact. If you have a differential 

dz = f (x,y) dx + g(x,y)dy, (350) 
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then the differential dz is exact if and only if 

( af(X,Y)) = (ag(x,y)) . (351)ay axx y 

Here's a trivial example. Consider the internal energy change during 
an expansion of an ideal gas. We can rewrite Eq. (349) as 

dU = CvdT + (~~) T dV (352) 

For an ideal gas, (W) T = 0, so 

dU= CvdT+OdV (353) 

In terms of the form needed for the Euler criterion, we have x = T, Y = V, 
f(x,y) = Cv, and g(x,y) = O. Then the Euler criterion says that dU is exact 
if and only if 

(354) 


On the left, we have 

(355) 

The order of partial differentiation does not matter, so 

(356) 


But we know that (~~) T = 0 for an ideal gas. Since both sides are equal to 

0, we find that dU is an exact differential (which we knew all along.) 

14 Prelude to the Second Law: the quantities dq and 
dq/T 

Let us consider the differential dq for a reversible process in an ideal gas. 
We have 

dq = dU - dw = Cv dT - P dV (357) 
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For this to be exact, we would have to have 

(ap) (acv ) (358)
aT v = av T' 

For an ideal gas, (~j) v = n(} . As above, for an ideal gas, the right hand 

side is equal to O. Therefore dq is not an exact differential, because n(} -I=- O. 

If we consider, still for the reversible process, 9f, we find 

dq = Cv dT- E.dV (359)
T T T 

and the Euler criterion is 

( a(CVIT)) = (a(PIT)) (360)av T aT v 

~ (acv ) = (a(nRIV)) (361)
T av T aT v 

0=0 (362) 

so that dql T is exact. We have shown this only for reversible processes in 
ideal gases, but it holds true in general: dql T is the differential of a state 
function, called the entropy, for all processes in all substances. The Second 
Law of thermodynamics, which states what processes can happen without 
the expenditure of work from the surroundings, is most simply stated in 
terms of the entropy. 
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15 The Second Law 

15.1 Statements of the Second Law 

We now come to one of the most interesting topics in all of science. Like all 
scientific "laws", the Second Law of thermodynamics is an abstraction from 
experience: it is a succinct statement of a large collection of experimental 
observations. It is not something that can be "proven", but is a rule that 
Nature has appeared to follow any time anyone has looked carefully. 

In this section I want to state the second law and show tht it implies 
the existence of a state function that does not change along any reversible 
adiabatic path. We will name this state function "entropy" ; it underlies 
every discussion of chemical equilibrium. My development in this section 
follows that given in Physical Chemistry by Berry, Rice, and Ross (Wiley, 
1980). 

Many different but equivalent statements of the Second Law have been 
given. Let me list a few: 

1. 	(Clausius) It is impossible to devise a continuously cycling engine 
that produces no effect other than the transfer of heat from a colder 
to a hotter body. 

2. 	(Kelvin) It is impossible to devise a continuously cycling engine that 
produces no effect other than the extraction of heat from a reservoir 
at one temperature and the performance of an equivalent amount of 
work. 

3. 	(Caratheodory) In the neighborhood of every equilibrium state of a 
closed system there are states that cannot be reached from the first 
state along any adiabatic path. 

Notice the importance given to cycliC processes: those that return the 
system to its original state. This emphasis arose historically from the study 
of mechanical engines. An engine is useless unless it is cyclic; if the pistons 
can only move up and down once in the cylinders before the engine must 
be thrown away, it isn't much good. A useful engine gets energy from 
somewhere, converts some of it (but not all of it, as we shall see), to work, 
the remainder to heat, and returns to its original state to start again. The 
motivation for the work that led up to the Second Law was to find out 
what controlled how much of the available energy could be converted to 
work. 
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It is easy to come up with processes that move heat from a colder to a 
hotter body. For example, we can put some gas in a cylinder and let it come 
to thermal equilibrium with an object at temperature T1. If we then pull the 
piston out, so that the gas expands isothermally, as we have seen it will 
extract heat from the object. Now, we remove the cylinder from the object, 
isolate it thermally, and compress the gas. Since the cylinder is isolated, 
the compression is adiabatic, and the gas temperature will rise; by doing 
enough work on the gas, we can make its temperature rise to temperature 
T3. Now we bring the gas into thermal contact with another object whose 
temperature is Tz, such that T3 > Tz > T1. Heat will flow from the gas 
into the second body. We have now moved heat from the first object to the 
second, even though the second was at a higher temperature. However, the 
gas in the cylinder is no longer in the same state it was before; its volume 
is smaller, and its temperature higher, than at the beginning. This process 
does not violate the Second Law. 

15.2 Existence of the entropy 

Figure 23: A cycle in the T, V plane. Section 1 ---> 2 is a reversible adiabat; 
section 2 ---> 3 is a reversible isotherm. 

Figure 23 shows the T, V diagram for a one-component, closed system. 
The path from point 1 to point 2 is a reversible, adiabatic path. The path 
from point 2 to point 3 is a reversible, isothermal path. I now ask the ques­
tion: can we find any reversible, adiabatic path from point 3 back to point 

Let me assume we can. We know, because the system returns to point 
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1. that t,.U = 0 for the whole cycle. Therefore, W = -q for the whole cycle. 
The path 1 ~ 2 is a reversible adiabat; adiabatic means ql--+Z = O. The 

path 2 ~ 3 is a reversible isothermal expansion; such an expansion requires 
qZ - 3 > O. Finally, the path 3 ~ 1 is a reversible adiabat with q3 - d = O. 
Therefore, overall, q > 0, and since q = - w, we have W < O. This cycle 
therefore converts heat drawn from a reservoir at temperature Tz (the tem­
perature of points 2 and 3, and the temperature of the only section of the 
cycle where any heat is transferred) into an equivalent amount of work. 
It therefore violates Kelvin's statement of the Second Law. There is no re­
versible adiabat connecting pOints 2 and 3. 

This argument holds for any substance and any isothermal path 2 ~ 3, 
so we find that through point 1 there is only one reversible adiabatic path. In 
other words, reversible adiabats cannot cross on a T, V diagram. 

Because the reversible adiabats cannot cross, we can describe any re­
versible adiabatic curve with a function T( V), or equivalently, f( T, V) = 
constant. Let me name such a function S( T, V); I will call it the entropy, 
and it will be constant along any reversible adiabatic curve. Therefore 
dS( T, V) = 0 along any reversible adiabat through (T, V). 

I have not given any detailed formula for S( T, V) yet; I still need to 
find a formula. But the existence of such a function is guaranteed by the 
uniqueness of the reversible adiabats. 

To proceed further, I consider what happens when we "step off" one of 
the reversible adiabats; that is, I consider the change in 5 brought about by 
a reversible heat flow. I must have 

dS( T, V) = 8( T, V) dqrev (363) 

where 8( T, V) is some as-yet-unknown function of Tand V. For reversible 
adiabatic processes, dqrev = 0 and this expression reduces to dS( T, V) = 0 
as it must. 

dqrev depends on the path of the reversible heat transfer; on the other 
hand, because the reversible adiabats are unique, S( T, V) must be a state 
function so dS( T, V) must be an exact differential. The function 8( T, V) 
therefore plays a special role; in differential equations it is called an inte­
grating factor. 

Consider two samples of material contained in an adiabatic can, both 
at temperature T but with different volumes \'J and \12. If a small amount 
of heat dqrev is transferred reversibly between them, then dql = -dqz. Be­
cause there is no heat flow from the overall surroundings, the entropy of 
the overall system does not change, and dS = dS1 + dSz = O. Then from 
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Eg. (363) we have 

(364) 


Since this is true no matter what VI and Vz are, and dq] -1= 0, we conclude 
that 

(365) 


that is, the function 8( T, V) does not depend on the volume but only on 
the temperature, and can be written simply 8(T). Furthermore, none of 
the arguments we have made so far have dependended on the properties 
of any substance; 8( T) must be universal, that is, the same function 8( T) 
must apply to all substances. If we can figure out what it is for any sub­
stance, we will have the formula for every substance. Let's use the easiest 
substance to work with, the ideal gas. 

For the ideal gas we have 

pV = nRT (366) 

(367)(~~) T = O. 

The First Law gives us for a reversible change 

dU = dq + dw = dq - pdV (368) 

but for the ideal gas we have 

(369)dU = (~~) v dT + (~~) T dV 

= CvdT (370) 

(because O~) T = 0 for an ideal gas.) Then 

dq = CvdT+ V
nRT 

dV (371) 

Substituting into Eg. (363) I find 

nRT 
dS = 8(T)dq = 8(T)Cv (T) dT +8(T)V dV (372) 
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We know from the uniqueness of reversible adiabats that 5( T, V) is a state 
function, so d5 must be an exact differential. The Euler criterion then tells 
us 

[~(8(T)CV(T))] = [~ (8(T)nRT)] (373)av T aT V v 

For the ideal gas, 

(374) 

because Cv is a function of temperature but not volume for an ideal gas. 
Therefore, 

[aaT (8(TtnRT)] v= n: aaT [T8(T)]v = 0, (375) 

and since n/} =1= °we conclude that 

a 
aT[T8(T)]v = 0, (376) 

or that T8( T) is a constant. Any old constant will do; for reasons of conve­
nience and consistency we choose to make T8( T) = 1, or 8( T) = 1/T, so 
that 

d5 = dqiev . (377) 

For any change, 

rT265 = dqiev . (378)
iTI 

The formula for d5 involves the heat transfer in a reversible process. If 
the process you are interested in is not reversible (which is most processes), 
then to calculate 65 you must fine some reversible path that gets you from 
the same initial to the same final state, evaluate 65 for each leg of that 
path, and add them all together. A simple example of such a calculation is 
Exercise 4.11 in your homework, which asks you to calculate the entropy 
change when two volumes of water at different temperatures are mixed 
together. 
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16 Examples of entropy calculations 

16.1 Reversible isothermal expansion of ideal gas 

In an isothermal change. T is constant, and for an ideal gas then U is also 
constant so dqrev = - dw = pdV; then 

dS = dqrev (379)
T 

!1S = Jdqiev = J~ dV (380) 

V2 nR 
= J -dV (381) 

VI V 

= nRln (~) . (382) 

Notice that the entropy change is positive for an isothermal expansion. 
negative for a compression. 

This procedure is typical of entropy calculations for reversible processes; 
you must figure out an expression for dqrev' then integrate it over the pro­
cess. 

16.2 Irreversible heat transfer 

Say 100 g of water at 80 °C is mixed in a Dewar flask with 100 g of water 
at 20 °C. You can show (and you do. in your homework. for a more com­
plicated case) that the final temperature will be 50 °C. What is the total 
entropy change? 

This mixing is irreversible; the two temperatures are not the same when 
the samples come into contact. so an infinitesimal change in the tempera­
ture of one sample will not reverse the direction of the heat transfer. To find 
the overall entropy change. we must find a reversible path between the two 
states. 

A simple reversible path is this: 

1. Cool sample A reversibly from 80 to 50 °C. 

2. Heat sample B reversibly from 20 to 50 °C. 

3. Add the two samples together; no heat flows in this process . so !1S = 
O. 
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We must calculate the entropy changes for the heating of sample A and 
the cooling of sample B, and add them together. 

For the heating process, we have 

(383) 

(384) 

(385) 

Similarly, for sample B we find 

(386) 

so the total entropy change in the sample is 

(387) 

Since the heating and cooling steps were carried out reversibly, the change 
in entropy in the surroundings (which supplied the heat to warm sample 
B, and received the heat from the cooling of sample A) were exactly oppo­
site those in the samples, so the overall change in entropy of the universe 
for this reversible path is zero. That is another possible definition of "re­
versible" . 

16.3 Entropy changes in the surroundings 

If we can regard the surroundings of any thermodynamic process as exist­
ing at constant temperature and pressure, then 

(388) 

and since the enthalpy is a state function, changes in it are independent 
of whether the heat transfer occurs reversibly or not; therefore, when the 
surroundings are at constant T and P, 

b.S = b.Hsurr (389)surr T 
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Similarly, if the surroundings are at constant T and V, then 

/).S = /). Usurr (390)surr T 

So under those conditions it is easy to calculate entropy changes in the 
surroundings. This idea is extremely powerful in considerations of chem­
ical equilibrium, and is the motivation for the introduction of the familiar 
Gibbs and Helmholz energies. 

16.4 Irreversible processes: the Clausius inequality 

Consider again our water-mixing problem. We found that for the sample, 

(391) 


while along the reversible path the entropy changes in the surroundings 
exactly cancelled those of the system so that the total entropy change was 
zero. What about along the original, irreversible path? If we just dump 
both samples into a Dewar flask together, then no heat flows into the sur­
roundings, so the entropy change in the surroundings is zero. The entropy 
change in the system is the same as before (entropy is a state function.) 
Examine the sign of the entropy change in the system: 

(392) 

(393) 

(394) 

The entropy change in the system will be positive if the argument of the 
logarithm is greater than 1. Examine that argument: 

( TA+2 TB)2Tf Tf 
(395)

TA TB TATB 

ii + 2TATB + rs (396)
4TATB 

1 ii+rs = - + ......:....:=---c=-=- (397)
2 4TATB 

= ! + ! (TA + TB) (398)
2 4 TB TA 
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Under what conditions will that argument be greater than I? We need 

~ + ~ (TA + TB) > 1 (399)
2 4 TB TA 

TA TB 2-+-> (400)
TB TA 

( TA) 2 + 1 > 2 TA (401)
TB TB 

(402)(~:-lr >0 
which will be true for any TA -I- TB. In other words, the entropy change of 
this isolated system is greater than zero for the irreversible process. That 
is true in general, not just for irreversible heat transfers, and is known as 
the inequality of Clausius: for any spontaneous process in an isolated sys­
tem, l'!S > O. That inequality will drive all the rest of our discussions of 
equilibrium. 
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17 Gibbs and Helmholtz energies 

~n~~y isol;t7d system, for any spontaneous (that is, natural) process, I1S > 
. . IS use u to regard the entire universe-system plus surroundin s-as 

~~eI:olated"syst:m. Th~s out1~ok lets us, as Atkins puts it, "concentr~te on 
ystem whIle makmg relIable predictions about what processes will be 

spontaneous. 

If we divide the universe into system and surroundings, then we must 
have, for any small spontaneous change, 

dSsys + dSsurr > O. (403) 

If the system is at constant temperature and pressure, then the heat that 
flows i~to the surroundings is -dqp = -dH, (where dH is the enthalpy 
change In the system). The entropy change in the surroundings is 

(404) 

leading to 

dSsys - T
dH 

> O. (405) 

If we multiply both sides by - T, (a negative quantity, so we must reverse 
the inequality), we find 

dH - TdS < O. (406) 

(I have dropped the "sys" subscript.) We have found a requirement on 
changes in state functions of the system that specifies whether a process is 
spontaneous or not on the basis of entropy changes in the universe, under 
the assumption that the system (and universe) are at constant temperature 
and pressure. 

An analogous argument, for the case of a system at constant tempera­
ture and volume, is the same except that the heat flow into the surround­
ings is given by -dqv = -dUo Following the argument exactly as before 
gives us the criterion for spontaneous processes at constant temperature 
and volume 

dU - TdS < O. (407) 

Those two inequalities, which are criteria for spontaneous change in 
systems at constant temperature or constant volume, suggest the defini­
tions of two new state functions: 

G= H- TS (408) 

A= U- TS (409) 
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These are called the Gibbs and Helmholtz energies (or "free energies"). 
With them the spontaneity criteria become 

dG < 0 (410) 

dA < 0 (411) 

Atkins has a good discussion at the bottom of page 114 that is worth 
reading. Often you will hear a statement something like "There is a tradeoff 
between changes in energy and entropy; systems want to be at low energy 
and high entropy, and whichever one "wins" determines the direction of 
spontaneous change." That is a misleading statement. Spontaneous change 
is determined entirely by changes in overall entropy of the universe. Under 
conditions of constant temperature and pressure, the Gibbs function will 
decrease if a system undergoes a change that increases the universe's en­
tropy. That is why the Gibbs function is useful. Similarly, if the system is at 
constant T and V, its Helmholtz function will decrease if the entropy of the 
universe increases. Both are useful because they let you predict entropy 
changes in the universe on the basis of more-easily-calculable changes in 
the system itself. 

17.1 Aside: reversibility and maxima 

From the Clausius inequality we can draw some conclusions that will be 
useful shortly. You know that for any change in the system, dS = dqyv ,and 
you know that dS + dSsurr :::: 0 (where the equality holds only for reversible 
processes) . We already saw that entropy changes in the surroundings at 
constant T do not depend on whether the process is carried out reversibly 

qor irreversibly, so dSsurr = -1. Then we have 

dqrev + -dq > 0 (412)
T T - , 

whence 

(413)dqrev :::: dq, 

or 


dq 
 (414)
dS:::: T' 

where all variables without subscripts apply to the system. In fact, Eq. (414) 

is sometimes called the Clausius inequality. 

notes-17 
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Atkins uses Eq. (414) to show by straightforward arguments (pages 
114-117) that ~A for a process gives the maximum amount of work that 
can be extracted from the process, and ~G for a process gives the maxi­
mum amount of non-expansion work that can be extracted from the pro­
cess. Along the way, in those arguments, he shows that any system does 
the maximum amount of work when it works reversibly. I shall not prove 
those things, but shall go on with similar arguments to move toward de­
scriptions of equilibrium. 

18 	 Alphabet soup: Maxwell relations and thermody­
namic equations of state 

We now move into Chapter 5 of Atkins and begin finding formulas that we 
can use to make predictions about chemistry. 

The First Law gives 
dU = dq+ dw. (415) 

Restrict the discussion for a moment to reversible processes doing only ex­
pansion (p V) work. Then dq = dqrev = T dS and dw = - P dV so we have 

dU= 	TdS- pdV (416) 

Because U is a state function, dU is independent of whether the change is 
carried out reversibly or not. Therefore, this equation holds for any pro­
cess doing only pV work. Atkins (but nobody else I know of) calls it the 
fundamental equation. 

dU is an exact differential. We could have regarded U as a function of S 
and V and written immediately 

(417)dU = (~~) v dS + (~~) 5 dV. 

ComparingEq. (416) and Eq. (417) gives 

(au) = T 	 (418)
as v 

(419)(~~)s=-p 

Also, because dU is an exact differential, the Euler criterion holds so that 

(420) 
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Eq. (420) is one of four Maxwell relations that provide routes between things 
one is interested in (like, how the internal energy changes with volume) 
and things one can measure (like heat capacities, changes of temperature 
with pressure, and so on.) The other three are derived in exactly the same 
way, by applying the Euler criterion to the differentials of H, G, and A. In 
Table 5 I list the results; you should be able to derive any expression in the 
later columns from the equation in the first. 

Table 5 The Gibbs equations (first column), the resulting thermodynamic 
identities (second and third), and the corresponding Maxwell relations (last 
column). 

dU= TdS- pdV 

dH = TdS+ Vdp 

dA = -SdT- pdV 

dG = -SdT+ Vdp 

lS.l Application: internal pressure of a van der Waals gas 

That ferocious-looking table can be used to answer real questions. The first 
I will show is one that a student has already asked me about: "How do we 

know that (~~) = £ for a van der Waals gas?" 
T v~ 

The trick is to change things you don't know how to evaluate into things 
you do by looking for substitutions. Here we go: 

We don't have O~) T in our table anywhere. But we do have (~~) s· 

Recall that we have a formula that lets you change the subscript on a partial 
derivative, by adding a fixup term. Looking up that formula (several pages 
back) gets us 

(au) = T 
as v 

(dH) = T 
as p 

(421) 
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In our table, we find simple expressions for two of those things: 

(au) =_p (422)av s 

(au) = T (423)as v 

giving 

(424)(~~) T = -p+ T (~~) T' 

The remaining partial derivative has an S in it, which does not appear in 
our van der Waals equation of state, but there is a substitution for it in the 
table, giving us 

(425)
( ~ ~) T = - P+ T ( ~~) v' 

So far nothing we have done has made any approximations or assumed any 
properties of a particular substance. Now we assume that the substance is 
a van der Waals gas, and we can evaluate that last term directly from the 
van der Waals equation. We have 

RT a 
(426)P=v. -b-v.2 

m m 

so that 

R (427)(~~) v = _vm b 

Substituting that into Eq. (425) gives 

(au) RT a (428)av T = -p+ Vm - b = V! 

after a simple substitution from the van der Waals equation. 

GeM July 19. 2002 notes-17 



19. The chemical potential 108 

19 The chemical potential 

Our development so far has been for pure substances of constant composi­
tion. To make thermodynamics useful in chemistry we need to extend it to 
account for variable composition in a system, since chemically reacting sys­
tems are by definition changing in composition. We can therefore no longer 
regard our state functions C, 5, and so on a functions of two variables only, 
but must add additional variables to account for composition changes. In 
chemistry, the Gibbs energy is the most valuable energy function, so I will 
concentrate on its dependence on composition. 

We had, for systems of constant composition, 

dC = -SdT+ Vdp (429) 

That equation is a friendlier-looking version of 

dC = (~~) p dT+ (~~) T dp. (430) 

To add variables, we just add terms. If we want to evaluate a small change 
in C when the pressure, temperature, or number of moles of substance k 
changes, we write 

dC = (~~) dT + (~C) dp + (~~) dnk (431) 
p,nk p T,nk k T,p 

If we have many different components, with numbers of moles of each one 
written as ni ' i = 1,2,3. , . k, then we write 

( OC) (OC) (OC)dC = oT dT+ a dp + on dnl 
p,n; P T,n; 1 T,p,n; ,e l 

+ ( -OC) dnz + .. . + (OC)- dnk (432) 
onz T,p,n;# onk T,p,n;# 

which I can write as 

k (OC)= ( OC) dT+ (OC) dp+ L dn j (433)dC oT a on. 
p,n; P T,n; 1= 1 1 T,p,nj,e; 

We define the chemical potential of species i in a one-phase system (not 
necessarily at constant composition: this holds for different chemical species 

GeM July 19. 2002 notes- IS 



109 19. The chemical potential 

in a solution. for example) as 

(434) 


The chemical potential tells how the Gibbs energy of a system changes 
when a substance is added to it. 

Our Gibbs equation now returns to a friendlier-looking form: 

k 

dG = -SdT + Vdp+ Lflidni (435) 
i= ! 

According to Levine: "(Eq. (435)) is the key equation in chemical ther­
modynamics." It applies to a closed system. internally at thermal and me­
chanical (but not chemical) equilibrium. where only pV work is considered. 

If you go through all the thermodynamic energy functions U. H. A. and 
G. you will find by simple substitutions that their Gibbs equations are all 
extended to the variable-composition case by adding a term 

k 

+ Lfli dni 
i= ! 

to them. The same chemical potentials can be used for all four. 

19.1 Chemical potential of a pure substance 

If there is only one component. then we have 

fl = (aG) = (anGm ) = G (436)an T,p an T,p m' 

that is. for a pure substance the chemical potential is simply the molar 
Gibbs energy. 

19,1.1 Variation of chemical potential with pressure ofideal gas 

We have for a one-component system 

dG = -SdT+ Vdp 
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If we consider an isothermal change of pressure of an ideal gas, we find 

(P2 
b.G = in Vdp (437) 

PI 
p2 nRT 

= l -dp (438) 
PI P 

= nRTln (~~) (439) 

Now if we define one particular pressure (traditionally one atmosphere, 
nowadays one bar) as the" standard pressure", then we can say 

G(p) = G<> + nRTln (; ) (440) 

Differentiating with respect to n, we find 

Jl(p) = Jl<> + RTln (; ) (441) 

This tells us, for a pure perfect gas, how the chemical potential varies with 
pressure. 
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19.2 Multiple phases 

In many problems more than one phase is present. For example, in the 
preparation of a Grignard reagent the organohalogen compound is typi­
cally present in solution, in contact with solid Mg. In the melting of ice 
both solid and liquid water are present, and so on. It is easy to extend 
Eq. (435) to multiple phases; in addition to a sum over the different sub­
stances present. we also need a sum over the phases. Each substance has a 
chemical potential for each phase (that is, the chemical potential of a given 
substance might be different in different phases.) We write, for k substances 
in m phases, 

m k 

dC = -SdT+ Vdp+ L Lllf dnf (442) 
<x=1 i=l 

where the superscript it denotes the phase. 

20 Conditions for material equilibrium 

In Section 17 we saw that the criterion for spontaneous (that is, natural, or 
possible) change at constant T and p is downhill in C, that is, dC < O. At 
equilibrium, then, when neither direction is downhill, we expect dC = 0; 
at constant T and p, Eq. (442) then reads 

m k

L Lll f dnf = O. (443) 
<x=1 j=l 

If we consider a system at constant T and V, then the equilibrium con­
dition is dA = 0; because the chemical potential terms are the same for dA 
as for dC, the condition for equilibrium is still given by Eq. (443). In fact, 
Eq. (443) is a general condition for material equilibrium; it is true for any 
closed system in material equilibrium, not matter what the conditions are. 
If the system is at constant T and p, Eq. (443) corresponds to dC = 0; if it is 
at constant T and V, it corresponds to dA = 0; under other conditions it cor­
responds to neither, but it still is the requirement for material equilibrium 
to be achieved. 

In general, material will "flow" from a form with high chemical poten­
tial to one with low chemical potential. The "flow" may correspond to a 
chemical reaction or to a phase change (evaporation, dissolving, etc.) At 
equilibrium, there is no change in composition that is "downhill"; chang­
ing a tiny amount of A into a tiny amount of B generates no net decrease in 
the overall chemical potential. 
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20.1 Phase equilibrium 

Consider the simplest sort of phase equilibrium, the partitioning of a single 
pure substance between two phases (for instance, the evaporation of water 
in a closed flask). Eq. (443) says that at equilibrium, the sum 

(444) 


where the subscript 1 indicates liquid and g indicates gas. Because the sys­
tem is closed, and only the two phases are present, we must have dn] = 
-dng. Substituting for dn] and rearranging I find 

(445) 


or, dividing by dng , 

(446) 

In other words, equilibrium is reached when the chemical potentials of the 
water in the liquid and the gas are equal. That is the general case: in a 
closed system, at material equilibrium every substance has the same chem­
ical potential in all the phases in which it appears. 

20.2 Reaction equilibrium 

When a chemical reaction occurs in a closed system, the change dnA in the 
number of moles of A is proportional to its stoichiometric coefficient vA in 
the balanced chemical equation (vA is positive if A is a product, negative if 
it is a reactant). The proportionality constant, commonly called the" extent 
of reaction", is often written g. For instance, in the reaction 

(447) 


if g= 0.1 mol then 0.1 mol of C3Hs03 and 0.3 mol of oxygen have been con­
sumed and 0.3 mol each of carbon dioxide and water have been produced. 

In a closed system at equilibrium, we just saw that the chemical poten­
tial of any species is the same in any phase in which it appears. Therefore, 
we can simplify our study of reaction equilibrium by assuming phase equi­
librium also holds. Then we have 

m k 

0 = L L71~ dn~ (448) 
a= ! i= ! 

= 

k m 

L L 71~ dn~ (449) 
i= ! a= ! 
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Since the chemical potential of substance j is the same in all phases a:, I can 
drop the superscript on llj and move it through the sum over phases: 

k m 

0 = L:>j L dn~ (450) 
j= [ a = [ 

k 

= Llljdnj (451) 
j= [ 

where the last line follows because the sum of the changes in the amount 
of substance j in all phases is just the total change in the amount of that 
substance. 

Now we consider the change in numbers of moles of each substance 
brought about by a small increase in the extent of reaction dg. For each 
substance we have dnj = Vj dg . Then the equilibrium condition becomes 

k 

0 = dg LlljVj (452) 
j=[ 

or, dividing by dg, 
k 

LlljVj = O. (453) 
j = [ 

This is the general condition for chemical equilibrium in a closed system. 
So far I have given several" rules of equilibrium", which can be written 

compactly in terms of chemical potentials . They are not useful, though, 
unless we can find ways to calculate the chemical potentials or to convert 
the rules into equations relating more easily measureable quantities. I want 
next to examine chemical equilibria in ideal gas mixtures, giving a concrete 
example of the power of the chemical potential idea. 

21 Reaction equilibrium in ideal gases 

We saw earlier that for a pure ideal gas at pressure p, the chemical potential 
II = ll " + RTln(p/p" ), where ll " is the chemical potential at pressure p" . 
For an ideal gas mixture, we regard each mixture component as indepen­
dent, so that the same equation holds, but with p interpreted as the partial 
pressure of each gas. Then 

llj(T) = ll~(T) + RTln (:~ ) (454) 
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The equilibrium condition, Eq. (453), becomes 

(455) 

Collecting the standard-state chemical potentials on the left, I have 

(456) 

In an ideal gas mixture, where there are no interactions between the 
different gas species, the individual gases act as though they were pure. 
Therefore, the chemical potentials on the left side are the chemical poten­
tials of the pure gases, that is, they are the molar Gibbs energies of the 
different gases. The sum on the left side is therefore the standard molar 
Gibbs energy of the reaction: 

k k 

LVjrl~(T) = LvjGtm(T) = 6.r GY (457) 
i= l i=! 

Now we have 

(458)6.r GY= -RTf. Vj In ( p~) 
i = ! P 

A multiplier in front of a logarithm becomes an exponent inside the loga­
rithm, and a sum of logs is the log of a product, so this is 

6.r GY= -RTlnIi ( P~) (459)Vi 

j=! P 

This is a very familiar equation, though you might not recognize it yet! 
Take, as an example, the ideal gas reaction 

aA + bB -----+ cC + dO (460) 

Now Va = -a, Vc = c, and so on, and we have 

(461) 

You should recognize the standard pressure equilibrium constant, 

(462) 
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where all the species pressures are equilibrium values. In the more general 
notation, 

K; = IT (p! ) Vj (463) 
i= ] P 

Our equilibrium condition is now 

(464) 

and we have derived the existence of a standard equilibrium constant that 
depends only on T. 
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First, an Erratum: beginning with Eq. (456) , I dropped a very important 
minus sign that should be in front of every RT term from there to here. 
Eq. (464) should read 

21.1 Temperature dependence of ideal gas equilibrium 

Eq. (464) is the fundam ental connection between tabulated thermodynamic 
data and the practical calculation of equilibrium constants for ideal gases. 
In real gases and solutions we cook up "adjusted" variables-fugacities 
and activities-to make the formulas look similar, but here in the clean, 
comfortable world of ideal gases we need no such complex cuisine. 

Solving Eq. (464) for In K; (T) and differentiating both sides with re­
spect to T gives us 

t.rC"" 1 d(t.rC"" ) 
(465)

RY - RT dT 

Since the overall reaction Gibbs energy is 

(466) 

we have 

(467) 

Our thermod.vnamic relations table gives ( ~~) p = - S, and the "" sym­

bol restricts us to constant p so that the total derivatives with respect to T 
are the same as partial derivatives; we therefore have 

and 

(468) 


(469) 
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Substituting that result into Eq. (465) gives 

din K; (T) b. G<> b. S<> 
dT = ;r + ~T 

b.rG <> + Tb. rS<> 

Rr 

(470) 

(471) 

(472) 


which is the ideal gas version of the van 't Hoffequation. It is one of the most 
important relations in practical thermodynamics; it describes the tempera ­
ture dependence of equilibrium constants. 

To experimentally evaluate b.r H <> of a reaction, you measure the par­
tial pressures of the reactants and products at several different tempera­
tures, from those calculate the equilibrium constants , and then fit them to 
Eq. (472). The most common sort of fit is the old make-it-a-straight-line­
dammit variety; because 

d( lIT) 
(473)

dT 

Eq. (472) can equally well be written 

dlnK;(T) 
(474)

d(lI T) 

So if you plot In K; (T) against 1/ T. the slope of the plot at any T gives 

b.rH<> at that T. If, as is usually the case over modest temperature ranges, 
b.rH<> is roughly constant with T, then the plot will give a straight line. 
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21.2 Examples 

I want to give several explicit examples of ideal gas equilibrium calcula­
tions. I will use the reaction 

(475) 

as my test case. 

21.2. 1 Evaluating thermodynamic quantities from tables 

First of all, let 's find <'1 r C298 and K;.298 for the reaction. In Table 2.6 in the 
back of Atkins, we fi nd the values given in Table 6, all for 298 K: 

Table 6 Thermodynamic values at 298 K for nitrogen dioxide and dinitro­
gen tetroxide, from the Append ix of Atkins. 

<'1fC<> I kJ mol- I <'1fH <> I kJ mol- I C;'ml J mol- I K- I 

5l. 31 33.18 37.20 
97.89 9.16 77 .28 

We can calculate <'1 r C298 immediately: 

L1 rC298 = 2<'1fC<> (N02) - <'1fC<> (N20 4) (476) 

= 2(5l.31 kJ mol- I) - 97.89 kJ mol- I (477) 

= 4.73 kJ mol- I (478) 

Now it is a short step to the equilibrium constant 

[; c" 
K;,298 = e-~ (479) 

- 1.9 1 
= e (480) 

= 0.148 (481) 

Now, w hat if we need the equilibrium constant at a different tempera­
ture, say 375 K? We have several options, and the best choice depends on 
the available data , the temperature range, the molecules at hand , and the 
required precision, 
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Constant t...H In the crudest approximation, we might assume that the en­
thalpy of reaction , t...r H" , is constant over the temperature range of interest. 
This is not a bad approximation if the temperature range is small. With this 
approximation, the van 't Hoff equation can be integrated directly to get the 
change in the equilibrium constant. The van't Hoff equation is 

d in K; 
(482)

dT 

If we assume t...rH" is independent of T, then this equation can be inte­
grated to give 

(483) 

(484) 

(485) 

(486) 

(487) 

t...rH~8 = 2t... f H" (N02) - t... fH" (N20 4) (488) 

= 2(33.18kJmol- 1) - 9.16klmol- 1 (489) 

= 57.20 kl mol - I. (490) 

giving us 

1InK" (375K) = -1.91- 57.20 x 103 1mol- (1 1) (491) 
p 8.3141 K- 1 mol- 1 375 K - 298 K 

= - 1.91 + 4.74 (492) 

= 2.83 (493) 

so that 
K; (375 K) = i 83 = 16.95. (494) 
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Constant tl Cp If the temperature range is wider, it may not be adequate 

to assume that tlrH <> is constant over the whole range. At the next level of 
approximation, we can assume instead that the heat capacities of the reac­
tants and products are constant. For example, for ordinary diatomic gases, 
Cp.m = ; R quite accurately from about 100 K to 2000 K. In our example 
problem, this assumption is not so good because there are low-frequency 
vibrations in N20 4 that are not all in v = 0 over our temperature range. 
Nonetheless, let's try it. 

We want to calculate tlr H <> (T), so we follow the procedure outlined in 
Section 12.5.2. We use 

tl r H <>( T2) = ( TI C~eactants( T) dT + tlrH<> (T) ) + ( T2 qroductS( T) dT (495) 
i~ i~ 

= tlr H <> (TJ) + ( T2 (qroducts (T) _ C~eactants( T)) dT (496)
iTI 

= tlrH<> (TJ) +tlCp ( T2 dT (497)
iTI 

= tl rH<> (TJ) + tlCp(T2 - TJ ) (498) 

Now I need to use this expression in the van 't Hoff equation to find the 
equilibrium constant at 375 K. Letting TJ ---> 298 and T2 ---> T, I have 

dIn K; = tl;~<> dT (499) 

tlrH<> (298 ) + tlCp (T - 298) 
(500)= R~ dT 

1375 tl H <> (298) + tl C (T - 298)
In K<> (375) - In K<> (298) = r p dT (501) 

p p 298 R~ 

= _ tlrH<> (298) (_1_ _ _1_) + tlCp ( 375 (T - 298) dT (502)
R 375 298 R i 298 ~ 

= _ tlrH <> (298) (_1__ _1_) + tlCp [In T + 298] 375 (503)
R 375 298 R T 298 

tlCp [(375) (504)(1 1)]= 4.74 + R In 298 + 298 375 - 298 

Table 6 gives us 

tlCp = 2(37.20) - 77. 28 = -2.88]K- J mol - J, (505) 
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where the "per mole" in the units refers to moles of N Z0 4. We therefore 
have 

InK;(375) 	= - 1.91 + 4.74 +0.071 (506) 

= 2.90, (507) 

so that K; (375) = 18.2 . 

Integration with accurate Cp It is not always reasonable to assume that 
the heat capacities are constant, especially over wide temperature ranges. 
In that case, we still use Eq. (496), but must find expressions for the heat 
capacities of products and reactants as functions of T. The NIST WebBook 
gives the fo llowing equation (and a handy Java program fo r generating 
plots or tables of data as a function of 1) for the heat capacity of NZ0 4: 

C;m = A + 	Bt + cr + Dt3 + Elr, (508) 

where t = T11 000 K. Two different sets of coefficients A-E are specified, 
one for the temperature range 500- 1000 K, and the other for the range 1000­
6000 K. Neither of them covers our range of interest. In a pinch, we could 
try interpolating between the data in that table, beginning at 500 K, and the 
Cp.m given in Atkins at 298 K. Instead let' s go on to calculating equilibrium 
properties from the better of the two estimates we have. 

21.2.2 Equilibrium calculations 

Let us calculate the mole fractions ofNOz and NZ0 4 in an equilibrium mix­
ture at 375 K and (1) fixed total pressure, and (2) fixe d volume, with an 
initial pressure of NZ0 4 of 10 bar and no NOz in both cases. 

I will give quantities referring to NZ0 4 a subscript 2 and those refer­
ring to NOz a subscript 1. In the fixed-total-pressure version (this is what 
happens if you enclose the gases in a balloon), this two-gas system can be 
solved very easily. We have PI + pz = Ptot' so 

K~ = 
p 

( pl l p~ )z 
pzlP~ 

(509) 

( pl l p~ )z 

(Ptot - PI I P~ 
(510) 

(511) 
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That gives a quadratic equation for PI; solving it numerically (quicker, fo r 
me, than using the quadratic formula) gives PI = 7. 17 bar. Since the total 
pressure is 10 bar, I have XI = 0.717 and Xz = 0.293. 

In the constant volume case, let me show a more systematic approach. 
Let z be the extent of reaction at equilibrium. Then we can set up an "ICE 
table" , as in general chemistry: 

nz nl 
initial api 0 

change -z 2z 
equilibrium api - z 2z 

Pe Pi - zl a 2z1 a 
where a = VI RT and Pi is the initial pressure of Nz0 4. Now we can 

write an expression for K; in terms of z: 

K" = (2z1 ap<»z (512) 
P (pi - zla) l p<> 

K<> <>_ (2zl a)z 
(5 13)

p P - Pi - zla 

(514) 

At this point it is useful to define a new variable Y = zl a. Then we have 

K<>"-~ (515)pP - Pi - Y 

We have values for everything in that equation except y, it 's a quadratic 
equation in y. You can solve it with the quadratic formula, or numerically; 
I would tend to do the latter. Setting up my calculator to evaluate 

4/ 
f (y ) = -0- - 18.2, (516)

1 - Y 

I find that y = 5 gives a positive result and y = 4 gives a negative result, 
so the root must lie between those two numbers. Searching in that range, 
after a minute or so I have y = 4.84368 to five places. (In the next section 
I'll show you how to get all those decimal places very fast.) 

With that result I can go back to find the mole fractions. We now know 
that y = zl a = 4.84368. The equilibrium mole fraction of Nz0 4 is then 

Xz= api - z = api - aY = Pi-y= O.347. (517) 
aPi- z + 2z api + ay Pi +Y 
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and since this is a 2-component system we have 

Xl = 1 - X2 = 0.653. (518) 

(Of course we could also calculate xl explicitly, like we did for x2' ) 
This ICE table approach, writing a = V / RT to convert numbers of 

moles to pressure, is the general method for constant-volume problems. 
In constant-pressure problems, you go from the equilibrium numbers of 
moles in the ICE table to equilibrium pressures by writing expressions for 
the mole frac tions in terms of z, then multiply ing each mole fraction by Ptot . 

In both cases you end up with a single-variable equation to solve for z (or 
y = z/ a). 

Finding roots of functions of a single variable When you have a quadratic 
equation, as in the problem we just did, you can find the roots using the 
quadratic formula you learned in high school. There w ill be two roots; 
only one of them will lie in the range of z that is acceptable from a Iimiting­
reagent standpoint. That is, only one of the two w ill give positive numbers 
of moles for a ll components at equilibrium. 

For many problems, you end up with equations of higher degree; in 
the homew ork, fo r example, you get a fourth-degree equation. There is a 
"quartic formula", like the quadratic formula, but it's messy, and there's no 
formula fo r equations of fifth degree or higher. I find it fast and comfortable 
to find roots of such equations numerically. 

It helps if you can get a good estimate of z ahead of tim e. If the equi­
librium constant is small , for example, and you started with no products in 
the mixture, then you expect the overall extent of reaction to be small and 
you can use the approximation so popular in weak acid-base chemistry, 
neglecting z whenever it is added to a larger number. 

Lacking such an estimate, the first task is to bracket the root: fllld two 
values of z w ithin the acceptable range that produce function valul's of 
opposite sign. In the example above, I used the function 

4;

f (y) = - 0- - 18.2,

1 - Y 

and found that y = 4 gave a negative f (y) and y = 5 a positive one; I 
therefore knew that the root lay somewhere between those two numbers. 
Call them the lower and upper limits. 

At this point. the most natural approach to choose is bisection. Try the 
value of y halfway between the two limits (4. 5 in this case). The function 
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w ill come out either positive or negative. Replace w hichever limit gave a 
function value of that sign with the trial value. In my case, f (y) is negative 
at 4.5, so my new limits are 4.5 < Y < 5. You can keep going in that way, 
halving the width of the interval w ith each iteration. 

Bisection gets you successive significant figures linearly with effort: it 
takes about three iterations to get each new significant figure. It is also 
foolproof; once you have a bracket, w ith function values of opposite signs 
on the two sides, there is no way bisection can fail. 

If you want high p recision, it is worth going to Newton's method. Its 
disadvantage is that if you do not have a good initial guess, it can fail alto­
gether; its advantage is that if you do have a good initial guess, it converges 
extremely fast, the number of significant figures doubling at each iteration. 
Within two or three iterations you are at the precision limit of your calcula­
tor. 

Newton's method works like this. If you have an equation f (x) = 0, 
and you have a guess at the root xo, then you get a new-and-improved 
guess by calculating 

f (xo) 
(519)

XI = Xo - f ' (xo) ' 

where f' is the derivative of f (x). In my example, if I have used bisection 
to get to 4.8 < Y < 4.9, I might use 4.85 as my initial guess. I rewrite f (y) as 

4; + 18.2y - 182 , (520) 

so I calculate my next value as 

4; + 18.2y - 182 
(521)Y]=Yo - 8y+ 18.2 . 

Putting in 4.85 I get back 4.843684211; putting that value in as Yo gives 
4.843681409 which is all the precision my calculator has. (Of course, it's 
also far more precision than my three-sig-fig equilibrium constant justifies!) 

Trapezoidal rule integrations It is also valuable to be able to do numeri­
cal integrals in a simple way. If you have a table of values of y as a function 
of X, and no handy way to get new values of y at X of your own choosing, 
then it 's hard to do much better than the trapezoidal rule: 

(522) 
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Figure 24 shows how this works. I set it up in a spreadsheet on the so­
lution set to this week's homework to evaluate the change in t,rH<> with 
temperature, so you can see how it gets implemented in that case. 

Figure 24: The trapezoidal rule for numerical integration. The x-axis gets 
broken into segments (probably at the tabulated xJ, and within each seg­
ment the area is treated as a trapezoid. The area of the trapezoid is the 
w idth times the average of the heights at the two sides. 
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22 Equilibrium in real gases and solutions 

22.1 Definition of activity 

For ideal gases we found that 

)1i = )17( T) + RTln (:~) (523) 

and from that 
(524) 


In dealing with reactions in condensed phases (especially solutions) and in 
real gases, it is useful to try to continue writing chemical potentials in that 
way. We define the (dimensionless) activity ai of substance i such that 

(5 25) 


where )17 (T) is the chemical potential of substance i in some specified ref­
erence state (the "standard state"). The chemical potential of substance i 
itself, )1 i' does not depend on the choice of standard state; but since )17(T) 
clearly does, the activity ai will as well. 

With this definition of activity we will, by the same procedure as before, 
find that there is an equilibrium constant with the form 

(526) 

22.2 Real gas activities: the fugacity 

Eq. (525) applies to real gases as well as to solutions, but to preserve a con­
cept of "effective pressure " in real gases, we define the fugacity ( of a gas i 
such that 

)1 i = )1 7(T) + RT In (:~ ) , (527) 

that is, ai = f/ P~ . The fugacity has units of pressure, and to make explicit 
the deviations from ideal gas behavior we write fi = cfJiPi where Pi is the 
true partial pressure of gas i and cfJi is the fugacity coefficient. Fugacity coef­
ficients approach 1 at low gas density, so that the equilibrium properties of 
real gases become those of ideal gases at low density. The " standard state" 
for real gases is therefore not a real state, but an imaginary state where the 
gases are at pressures of 1 bar but behaving ideally. 
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Fugacity coefficients fo r pure gases can be calculated from 

(528) 

where Z is the compression factor of the gas, Z = pJr .For gas mixtures, a 
firs t approximation (called the "Lewis-Randall rule" ) is to set the fugacity 
coefficients for all gases in the mixture to those of the pure gases. If the 
intermolecular interactions between the different gases are very different, 
though, that is not a good approximation. Methods for calculating fugac­
ity coefficients fo r mixtures are given in Reid, Prausnitz, and Poling, The 
Properties of Gases and Liquids, 4th ed. (McGraw-Hill , 1987). 

With fugacity coefficients in hand, we have 

(529) 

w hich can be factored to give 

(530) 

A sensible way to evaluate equilibrium pressures in reacting real gas 
mixtures is as follows. You calculate K~ in the usual way from tabulated 
values of {:..rGr, and work out initial estimates of the equilibrium pressures 
by assuming all the gases are ideal. With the approximate equilibrium pres­
sures thus obtained, you find fugacity coefficients of the mixture compo­
nents, then "correct" K~ by dividing by the appropriate quotient of fugac­
ity coefficients of the reacting gases. After that, the equilibrium pressures 
in the reacting mixture can be found again. A couple of iterations of this 
procedure is usually enough to converge it, since the gas behavior is not 
usually terribly far from ideal. 

22.3 Ideal and ideally dilute solutions 

To define useful standard states for solution equilibrium calculations, we 
need to construct a solution equivalent of the ideal gas law. In an ideal gas, 
there are no intermolecular interactions. The intermolecular interactions in 
liquid solutions are so important that it would be foolish to ignore them. 
Instead, we imagine two kinds of solutions in w hich the intermolecular 
interactions are simplified: 
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1. 	 In an ideal solution, the interactions between species A and B are the 
same as those between A and A and those between B and B. 

2. 	 In an ideally dilute solution, there are so few B (solute) molecules that 
only A- A and A-B interactions exist; no B-B interactions need be 
considered . 

A mixture oftwo similar liquids often makes a nearly-ideal solution; for 
example, benzene and toluene, acetone and methyl ethyl ketone, or ethanol 
and isopropanol. An ideally dilute solution, on the other hand, generally 
must be very d ilute (more so for electrolyte solutes), but there is no require­
ment that solute and solvent be chemically similar. Glucose in water can 
be an ideally dilute solution at low concentration, but is not an ideal one 
under any circumstances. 

22.3.1 Raoult 's Law 

I will fo llow the convention of Atkins (and some other authors) and denote 
properties of pure substances with asterisks. The chemical potential of pure 
liquid A (at some specified T and p) is Ji~ . At liquid-vapor equilibrium, 
that must be equal to the chemical potential of pure vapor A, so we have 
(treating vapor A as an ideal gas) 

Ji ~ = Ji A+ RTln (~~ ) 	 (531) 

w here JiA is the chemical potential of vapor A at the standard pressure, and 
p~ is the vapor pressure of pure A. 

Now if we have a solution, w ith some B mixed in w ith the A, the chemi­
cal potential of A in the liquid changes, and its vapor pressure also changes 
(since at equilibrium the chemical potentials of A in the two phases must 
be the same.) We write 

Ji A = JiA + RTln (~~ ) 	 (532) 

Eliminating JiA between those two equations gives 

JiA 	= Ji~ + RTln (~~) (533) 

Now if you make a mixture of benzene and toluene, and measure the 
vapor pressure above the liquid, you do not get a value that is the sum of 
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the vapor pressures of the two pure substances. You would not expect to, 
since that would mean that if you put a very tiny amount of toluene into 
a benzene sample its vapor pressure would nearly double! Instead , you 
would expect that the vapor pressure above a nearly-pure benzene sample 
would be nearly that of benzene, and the vapor pressure above a nearly­
pure toluene sample would be nearly that of toluene. In fact that is the 
case, and Raoult's Law is the statement that fo r ideal solutions, the vapor 
pressure above a mixed solution w ill vary linearly with the composition of 
the solution. More specifically, 

(534) 

Even for solutions that are not ideal, this expression gives a limiting behav­
ior for the majority component as the solution becomes very dilute. That 
is, adding a small amount of solute to any solvent will change the vapor 
pressure of the solvent according to Eq. (534) . 

Substituting Eq. (534) into Eq. (533) gives 

(53 5) 

We will use this equation shortly to define activity coefficients for nonideal 
solutions. 

22.3.2 Henry's Law 

Raoult' s Law gives the vapor pressure behavior fo r the solvent (the major­
ity component) in the limit of high dilutions for real solutions . There is a 
corresponding limiting law for the solute (the minority component) : the 
vapor pressure of the solute above the solution is still proportional to the 
mole fraction of solute, but the proportionality constant is not simply the 
vapor pressure of the pure solute. Instead, we write 

(536) 

where KB is called the "Henry's Law constant" for the solute. The H enry's 
Law constant has units of pressure (it is sometimes defined in terms of the 
molality instead of the mole fraction, in which case it has units of bar mol 
kg- I). It depends on the solvent and on the temperature, but only very 
weakly on p ressure. 

Henry's Law plays an important role in environmental chemistry, since 
it determines the partitioning of surface water contaminants between aque­
ous and gas phases. Henry's Law constants for many substances in water, 
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and for fewer substances in other solvents, are available in tables; the NIST 
WebBook has Henry's Law constants in water for many compounds. 

Figure 7.15 in Atkins shows how Raoult 's and Henry's Laws apply to a 
real solution; Raoult's Law works for the majority component and Henry' s 
Law fo r the minority component at either extreme of solution composition, 
while neither works particularly well in between. Figure 25 shows some 
other cases. 

Figure 25: Vapor pressure behavior of real solutions. From Lewis and Ran­
dall, Thermodynamics, 2nd edition; original data from J. von Zawidzki, Z. 
Phys. Chern 35 , 129 (1900). 
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22.4 Activity conventions for solvents and solutes 

22.4.1 Solvent activities 

Eq. (533) was 

J1A = J1 A + RTln (~~) 
If the solution is ideal. then Raoult's Law holds, PA = XAPA' and we have 

(537) 

But even if the solution is not ideal. we can write instead 

(538) 

w ith 
PA 

aA = -. , (539) 
PA 

and everything still works. Now you can see that the activity aA is a sort 
of "effective mole fraction" ; if the solution is ideal. it is exactly the mole 
frac tion, but if it is not, the activity is different from the mole fraction but 
can still be determined by measuring the partial pressure of A above the 
solution. To emphasize the limiting mole-fraction behavior, we can write 

aA = IA x A , (540) 

where I A is an activity coefficient. 

Example In an acetone-chloroform solution with the liquid mole fraction 
of acetone was 0.2003, the mole fraction of acetone in the vapor was 0.1434 
and the total vapor pressure above the solution was 262 torr. At the same 
temperature, the vapor pressure of pure acetone is 344.5 torr. Let us evalu­
ate the activity coefficient of acetone in the solution. 

Leaving out subscripts, we have a = pi p', and a = IX. The partial va­
por pressure P of acetone is the total vapor pressure times the mole fraction 
of acetone in the vapor. Combining all those gives 

1 = 
Xvapor Ptot 

• (541) 
XliquidP 

(.1434)(262) 
(.2003)(344 .5) 

(542) 

= 0.544 (543) 
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The activity coefficient is less than one; the acetone is less likely to leave 
the solution and appear in the vapor than it would be in pure acetone. The 
attractive interactions between acetone and chloroform produce "negative 
deviations" from Raoult 's Law. 

Activities calculated in the way I just showed are called Raoult's Law 
activities, or "solvent activities ". Solvents are always treated this way, and 
in mixtures of liquids with relatively large mole fractions of both compo­
nents this treatment might be used for both . This mole-fraction convention 
is always used for pure materials as well; this is the reason that in ordinary 
equilibrium constant expressions, we can leave out terms fo r the solvent or 
for any pure materials (like the solid at the bottom of a saturated solution 
in a solubility equilibrium problem) . 

In this convention, all the components of the solution are treated on an 
equal footing. Usually, though, there is a clear "solvent" and one or more 
"solutes" with much lower mole fractions. Next let us examine the usual 
convention for that case. 

22.4.2 Solute activities 

The difficulty with the Raoult 's Law convention for activities when solutes 
are considered is that the activity coefficients approach 1 as the mole frac­
tion approaches 1, and that is very far from typical conditions for solutes. 
Were we to use that convention for solutes, we would be dealing with ac­
tivity coefficients far from 1 most of the time, which would be painful. 
Instead, we model our activity coefficients on the ideally-dilute solution, 
which shows Henry's Law behavior, and write 

aB = PB (544)
KB 

Note that we use the Henry's Law constant this time, in place of the va­
por pressure of the pure liquid. Once again we determine activity coeffi­
cients w ith vapor pressure measurements. The vapor pressure behavior of 
a solute obeys Henry 's Law in the limit of small mole fraction, so activity 
coefficients in this convention will approach 1 as the solute become more 
dilute. This definition for the activity is called (big surprise) the Henry's 
Law convention. 

22.5 Molality scale activities 

In fact, in tables of thermodynamic functions , solution activities are usually 
given in terms of the molality (moles solute/ kg solvent) scale rather than 
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the mole fraction scale. This change makes a difference in the absolute 
values of the tabulated numbers but does not change the value of any 6. G 
or 6.H that you would calculate. We write 

<> b
JA B = JA B + RTln ----;-, (545) 

b 

w here b indicates the molality of the solution, b<> is the "standard molality" 
(one mol/kg), and JAB is the chemical potential of B in the" molality-scale 
standard state ", which is an imaginary state in w hich the concentration of 
B is 1 molal but it behaves as though it was at very high dilution. 

GeM July 19. 2002 notes-23 



134 23. Electrochemistry 

23 Electrochemistry 

In an electrochemical cell. it is possible to separate the two half-reactions 
that take place during a redox reaction. The electrons that leave the ox­
idized species travel through wires before arriving at the position of the 
other species and reduci ng it. 

23.1 Standard thermodynamic functions for ions 

There are only a few new thermodynamic ideas associated with electro­
chemistry. The first is that enthalpies and entropies of formation of aque­
ous ions, unlike those of neutral compounds, cannot be determined in­
dividually; any ionic solution contains both positive and negative ions. 
Therefore, ion thermodynamic properties are conventionally determined 
by defining the standard enthalpy, entropy, and Gibbs energy of formation 
of H+ (aq) to be zero, and determining all the thermodynamic properties 
of other ions by comparison. For example, Atkins shows how to determine 
the Gibbs energy of formation of chloride ion. We measure (experimentally, 
by calorimetry) the enthalpy and entropy changes in the reaction 

(546) 

The experimental /',. rH;98 for that reaction is -167.16 kJ mol- I; since the en­
thalpy of formation of H + (aq) is defined to be zero, and since both reactants 
are elements in their standard states, that value is the enthalpy of forma­
tion of aqueous chloride ion. Now a calorimetric measurement on another 
reaction involving H+(a q) , Cl - (aq), and elements, that consumes or pro­
duces another ion, w ill yield the enthalpy of formation of that ion, and so 
on. All the aqueous ion thermodynamic properties in Table 2.6 of Atkins 
were determined that way. 

Standard entropies of ions are determined using the same convention. 
For this reason, entropy entries for ions in thermodynamic tables some­
times show negative values (which never appear for neutral compounds, 
since their reference state is the pure compound at 0 K, and heat must al­
ways be added to bring them to the standard temperature) . A negative 
standard entropy for an aqueous ion implies that a solution of that ion has 
lower entropy than a solution of H+ (aq) at the same temperature and pres­
sure. 
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23.2 Electrochemical cells 

In an electrochemical cell, we have two electrodes (chunks of metal, often 
different metals) immersed in electrolyte solutions. Both electrodes can be 
in one solution, or they can be in different solutions connected by a salt 
bridge, which allows ions (positive or negative) to flow from one "compart­
ment" to another without allowing the solutions to mix. At one of the elec­
trodes (the anode), electrons flow from the solution (or, sometimes, a gas or 
insoluble salt in contact with the electrode) into the electrode. At the other 
electrode (the cathode), electrons flow from the electrode into the material 
surrounding it. 

If the two electrodes are in separate compartments, some ions must flow 
from one compartment to another to keep charges from building up on 
the two sides. That is the purpose of the salt bridge; often , inert salts (for 
exam ple, potassium chloride) are added to the solutions and the salt bridge 
for this purpose. 

In the standard notation for electrochemical cells , the electrode mate­
rials are w ritten at the ends, w ith the materials separating them listed in 
order.. Each phase boundary is specified by a vertical line; a phase bound­
ary with no j unction potential (change in electrical potential from one side 
of the boundary to the other, usually prod uced by a salt bridge) is given a 
double vertical line. The "Daniell cell ", an early battery, is w ritten 

Zn(s) IZnS04 (aq) IICuS04 (aq) ICu (s) (547) 

and shown in Figure 26. The reaction at the cathode (a reduction) is 

Cu 2+ (aq) + 2e- ---+ Cu (s) (5 48) 

while that at the anode is 

Zn(s) ---+ Zn2+ (aq) (5 49) 

Electrochemical half-reactions are nearly always w ritten as reductions (with 
the electrons as reactants, not products) , so in a table you w ould find the 
Zn reaction w ritten the other way around . The overall reaction is 

Cu2+ (aq) + Zn(s) ---+ Cu (s) + Zn2+ (aq) (550) 

That reaction is spontaneous; if you stick a piece of zinc into a solution 
of copper sulfate, metallic copper will appear on the zinc rod . If you take 
two beakers, fi ll one with zinc sulfate solution and one w ith copper sulfate 
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solution, connect them with a salt bridge, stick a zinc rod in the first and 
a copper rod in the second, and connect a high-quality voltmeter across 
the two electrodes, you will read a "cell potential" of over a volt (w ith the 
copper rod being positive with respect to the zinc.) I next want to show 
how to predict those things from tabulated information. 

Figure 26: The Daniell cell with salt bridge; cf. Atkins figures 10.9 and 10.10. 

23.3 Cell potential and the Nernst equation 

The link between electrochemical measurements and the Gibbs energy is 
the formula for the amount of work required to move a charge through a 
potential difference: w = qtl V. That idea, plus the role of the Gibbs energy 
as the maximum non-PV work obtainable from a system , leads quickly to 
the crucial formula 

- v FE = tlr G, (551) 

where v is the number of electrons transferred in the reaction from anode 
to cathode, F is the Faraday constant (the charge on a mole of electrons: 
96485.3 C mol-I), and E is the zero-current cell potential (also called "elec­
tromotive force" or just emf) , the voltage you measure across the cell elec­
trodes if no current is flowing. (It 's unfortunate that electrochemists use E 
rather than V for the cell potential , in my opinion.) 

Writing the change in Gibbs energy for a reaction in terms of the standard-
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state Gibbs energy change. we have 

(552) 


w here Q is the usual ratio of product and reactant activities raised to their 
stoichiometric powers. Dividing both sides by -vF. and defining 

E<> = _ t.rG<> (553)vF . 

we arrive at the Nernst equation: 

E = E<> - ~; In Q. 	 (554) 

The Nernst equation tells us how the observed potential of the cell will 
change with cell composition. If the reaction reaches equilibrium. Q = K. 
the cell is no longer capable of doing work so E = O. and we have 

E<> = 	RT InK (555)
vF 

Now. how do we find E<>? Easy: we look up reduction potentials for 
the two half-reactions occuring in the cell. invert the sign for the oxidation 
reaction. and add the two together. Notice that if you have a system where 
one half-reaction must occur twice to allow the other to occur once. it is 
not necessary to multiply the first standard potential by 2; that is taken 
care of by the v term in Eq. (554) . Standard reduction potentials are written 
assuming a standard state with all ions at 1molal concentration but ideally­
dilute behavior. so the equilibrium constants come out with activities on the 
molality scale. 

Notice that Eq. (5 53) indicates that if an overall reaction has E<> > O. 
then t.rG<> < 0 and the reaction is spontaneous as written (that is. will 
proceed to the right). 

Example: K for simple redox reaction Let us evaluate the equilibrium 
constant for the reaction 

For this case the two half-reactions (written as reductions) are simple: 

Fe3+(aq) + e­ ---> Fe2+ (aq) E<> = + 0.77 V (557) 

Mn3+ (aq) + e- ---> Mn2+ (aq) E<> = + 1.51 V (558) 
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The standard cell potential is therefore 0.77 - l.51 = -0.74 V. The equilib­
rium constant is 

= vFE~I K (559) n RT 

The value of RT/ Fat 298 K is 0.025693 V, and v = 1, so 

- 0.74 V 
(560)In K = 0.025693 V 

= - 28 .8 (561) 

K = 3.1 X 10- 13 (562) 

This reaction equilibrium lies to the left as written; the reaction mixture will 
be mostly reactants at equilibrium. 
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24 Temperature Dependence of Rates 

Most reactions go faster with increasing temperature. A common equation 
used to describe the T dependence is the Arrhenius equation, 

(563) 

The Arrhenius equation is neither exact nor universal, but it describes 
many reactions tolerably well over a modest temperature range, and it con­
tains elements of the correct physics. The parameters A and Ea should be 
regarded as empirical quantities w ith the defini tions 

E (T) = _R d(1nk) (564) 
a d( l / T) 

= Rr d(1n k) (565)
dT 

A( T) = k(T)/ exp ( -Ea(T) / RT) (566) 

The necessary function k( T) can be obtained either from experiment or 
from some theory. Figure 27 shows the behavior predicted by the Arrhe­
nius equation for the two common plots, k vs. T and In (k) vs. 11 T. 
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10 10Figure 27: Two plots of rate coefficients for a reaction w ith A 
cm3mol- \ - 1 and Ea = 20 kJ/mol. 

Most chemists think of the activation energy Ea as a measure of the "bar­
rier height" of the reaction. That interpretation is basically correct . though 
it can be misleading when the reactions studied are composite rather than 
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elementary. A sharper interpretation, for elementary reactions, is given by 
Tolman's theorem: the activation energy is the difference between the aver­
age energy of molecules in the process of reacting and the average energy of 
all the molecules. There is no reason to expect, from this interpretation, that 
the activation energy should be independent of temperature, but tempera­
ture dependence of Ea is difficult to detect with imprecise data over limited 
temperature ranges. Figure 28 gives a schematic of this interpretation. 

Figure 28: Tolman 's theorem. 

The"classical" method of finding A and Ea is to plot In(k) vs. 11 T for 
a series of rate coefficients measured at different T, and get Ea and A from 
the slope and intercept. Both that method and the more modem nonlinear 
fit directly to the Arrhenius equation suffer from heavy correlations: The 
same data can be fit equally well by many different A I Ea pairs, so it is 
not possible to determine either value very precisely. These correlations 
occur because the data are taken over a fairly narrow range of T. and long 
extrapolations are necessary, as appears in the right panel of Figure 27. 

When data of high quality are taken over a sufficiently wide temper­
ature range, usually the Arrhenius equation does not describe them accu­
rately; plots of In k vs. 1 I T are curved. In that case we speak of temperature­
dependent A and Ea, as illustrated in Figure 29 . 

Such behavior is possible for several reasons. Most commonly, the reac­
tion being studied is not an elementary one, and while one of the elemen­
tary steps might be the rate-limiting one at low temperature, a different 
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Figure 29: "Arrhenius plot" for a reaction that does not fo llow simple Ar­
rhenius behavior. 

one might be rate- limiting at high temperature; in that case, the slope will 
change from one value to another in the intermediate temperature range. 
(This sort of case is what I used to make the plot.) But Arrhenius plots are 
often curved even for elementary reactions; the way the available thermal 
energy is distributed among the molecules will change as T changes, and 
that will produce changes in the average energies described by Tolman's 
theorem. 

Data that show curvature on Arrhenius plots are most often fitted by 
the equation 

(567) 


where the three parameters A m, and Eb may be varied to fit the data . The 
values of A m, and Eb should be regarded simply as empirical fitting con­
stants that can be used to summarize a large quantity of kinetic data with 
just a few numbers. It can be misleading to try to extract chemical infor­
mation from empirically fitted values. On the other hand, some theories of 
reaction rates make physical predictions of the values of A m, and Eb. 
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24.1 Thermodynamic functions of activation 

There is a large and relatively successful body of theory called "transition 
state theory" or "activated complex theory" whose initial goal was the ab­
solute pred iction of rate coefficients. That goal has been met in very limited 
cases, but the theory has found w ide use because it provides some insight 
into the underlying chemistry of kinetic processes. The fundamental as­
sumption of transition state theory is there there are molecular complexes 
of special types, called "transition states", that are in the process of becom­
ing products, and these transition states are in equilibrium with reactants 
at all times. 

This assumption makes it reasonable to talk about a sort of equilibrium 
constant for the conversion from ordinary reactants to transition states. If 
the rate of appearance of products is proportional to the concentration of 
transition states, then (with some work that I have left out) we get, in the 
most common notation, 

_ kB T t.sl / R - t.H1 / RTk - h e e , (568) 

w here L'lS+ is the entropy of activation and L'l H+ is the enthalpy of activation. 
The enthalpy of activation is traditionally determined by an "Eyring plot ", 
a plot of kl T against 1 I T: the slope of such a plot is - L'l H+ I R. The nUlllcr­
ical value of L'lH+ is not usually very different (perhaps by a few times R7) 
from that of Ea: the detailed relationship between the two depends of the 
type of reaction. (Should you need to know, I recommend Chemical Kinetics. 
by K. J. Laidler.) Keep in mind that these "thermodynamic functions of ac­
tivation " are not true equilibrium thermodynamic properties, and cannot 
generally be measured with the precision of equilibrium properties such as 
heats of formation. 

24.2 Example 

The following few pages are copied from a large 1992 compilation of data 
on hundreds of reactions in the gas phase, intended for people setting up 
computer models of hydrocarbon combustion. The OH + CH 4 reaction has 
been studied for many years , and the data available for it are more numer­
ous and of better quality than those for many other reactions: nonetheless, 
you can see that there is still a fair amount of scatter. 
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25 Statistical mechanics 

Statistical mechanics. the last major field of physical chemistry. is the one 
that connects the molecular properties of the quantum world with the ther ­
modynamic properties of the macroscopic world . Its task is to permit the 
calculation of macroscopic properties (pressure. equilibrium constants. boil ­
ing points. and so on) from the properties of the molecules themselves. It 
began with Maxwell and Boltzmann and the kinetic theory of gases. and 
took great strides with the work of Gibbs and Einstein. There is a large and 
busy research community now applying it to liquid and solid systems and 
especially to biological problems. 

Statistical mechanics has two principal postulates: 

1. 	 We can calculate the time-averaged value of any macroscopic prop­
erty of a single system by instead imagining very many similar sys­
tems (" similar " meaning w ith a sufficient set of macroscopic prop­
erties defined: for example . volume. temperature. and composition) . 
and averaging over that collection of imagined systems. Such an av­
erage is called an average over the ensemble. 

2. 	 For a macroscopic system of specified volume. temperature. and com­
position. all quantum states of equal energy have equal probability of 
occuring. 

With those two postulates you can get remarkably far. The quantity of 
central importance in statistical mechanics is the par tition function : 

Z = L e- E/ kBT• 	 (569) 
j 

w here the sum is over all quantum states (not energy levels; each state of a 
degenerate group is treated separately) of the macroscop ic system. and Ej 

is the total energy of each state. 
If the partition function is known (a lIearly impossible condition in the 

general case). then all the thermodynamic properties of the system are cal­
culable. For example: 

U = kBr (d (lnZ) ) (570)
dT VN 

, I 

S = k T (d(1n Z ) ) k 1 Z 
B dT + B n 	 (571) 

V,Ni 

A = - kBTlnZ 	 (572) 
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The actual calculation of partition functions for macroscopic systems 
of interacting particles (for example, liquids) is very difficult, because the 
number of possible quantum states of a system of many molecules is enor­
mous. Practical calculations require approximations. Some very clever ap ­
proaches are known, but let's move to noninteracting systems (ideal gases!) 
where concrete results are easier to come by. 

25.1 Molecular partition functions 

Ifwe have a collection of identical, noninteracting molecules, then the over­
all partition function becomes 

(573) 


where N is the number of molecules and z is the molecular partition function: 

(574) 


where r labels the individual quantum states of a single molecule, and cr 

is the energy of each level. The molecular partition function can be rewrit­
ten in terms of energy levels, as opposed to individual quantum states, as 
fo llows: 

' j 

z = Lgje- kjJT (575) 
j 

where gj is the degeneracy oflevelj with energy Cj ' 

25.2 The Boltzmann distribution 

One of the most fundamental results of molecular statistical mechanics is 
the Boltzmann distribution law. The probability of finding a molecule in 
energy level i is given by 

(576) 


For example, the fraction of molecules in a sample of CO at 300 K in the 
rotational level J is 

B](]+ I) 

(2 J + 1 )e-~ 
(577)

00 B1(1+ I) 

L (2J + 1)e- k'ijT 
J=O . 
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With B = 1.9225 cm- 1, at 300 K we get z = 106.9 and P(lO) = 0.067. To 
evaluate the partition function I carried out the sum up to J = 50, which is 
plenty high to converge the sum to three decimal places. 
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